Volume 21, Issue 4 (Winter 2018)                   jwss 2018, 21(4): 15-28 | Back to browse issues page

XML Persian Abstract Print

1. Dept. of Range & Watershed Manage. Faculty of Agric. & Natural Resour., Mohaghegh Ardabili Univ., Ardabil. Iran. , raoofmostafazadeh@yahoo.com
Abstract:   (7779 Views)
The SCS-CN developed by the USDA Soil Conservation Service is a widely used technique for estimation of direct runoff from rainfall events. The watershed CN represents the hydrological response of watershed as an indicator of watershed potential runoff generation. The aim of this research is determining the CN from recorded rainfall-runoff events in different seasons and analyzing its relationship with rainfall components in the Jafarabad Watershed, Golestan Province. The CN values of 43 simultaneous storm events were determined using SCS-CN model and the available storm events of each season have been separated and the significant differences of CN values were analyzed using ANOVA method. The Triple Diagram Models provided by Surfer software were used to analyze the relationships of CNs and rainfall components. Results showed that the mean values of CN were 60 for summer and winter seasons and the CN values in the spring and autumn seasons were 50 and 65, respectively. The inter-relationships of CN amounts and rainfall characteristic showed that the high values of CNs were related to high rainfall intensities (>10 mm/hr) and rain-storms with total rainfall more than 40 mm. Also the CN values were about >70 for the storm events with 40-80% runoff coefficient values.
Full-Text [PDF 729 kb]   (2306 Downloads)    
Type of Study: Research | Subject: Ggeneral
Received: 2016/05/28 | Accepted: 2016/11/16 | Published: 2018/02/7

1. 7. Agirre, U., M. Goni, J. J. Lopez and F. N. Gimena. 2005. Application of a unit hydrograph based on sub-watershed division and comparison with Nash’s instantaneous unit hydrograph. Catena. 64: 321–332.
2. 8. Ahmad, I., V. Verma and M. K. Verma. 2015. Application of curve number method for estimation of runoff potential GIS environment. 2nd ICGCE 80:16-20, 10-11 January, United Arab Emirates.
3. 9. Altunkaynak, A., M. Özger and Z. Sen. 2003. Triple diagram model of level fluctuation in Lake Van, Turkey. Hydrol. Earth. Syst. Sci. 7(2): 235–244.
4. 10. Altunkaynak, A., and K, Wang. 2010. Triple diagram models for prediction of suspended solid concentration in Lake Okeechobee, Florida. J. Hydrol. 387: 165–175.
5. 11. Bahremand, A and R. Mostafazadeh. 2010. Comparison of different methods for parameter estimation of Nash’s instantaneous unit hydrograph in JafarAbad watershed. Watershed Mgmt. Res. J. 86: 42-51.
6. 12. Banasik, K., A. Krajewski., A. Sikorska and L. Hejduk. 2014a. Curve number estimation for a small urban catchment from recorded rainfall-runoff events. J. Environ. Prot. 40(3): 75-86.
7. 13. Banasik, K., A. Rutkowska and S. Kohnova. 2014b. Retention and curve number variability in a small agricultural catchment: the probabilistic approach. Water. 6: 1118-1133.
8. 14. Beasley, D. B., L. F. Huggins and E. J. Monke. 1980. ANSWERS: A model for watershed planning. Transactions of the ASAE. 23(4): 938-944.
9. 15. Blume, T., E. Zehr and A. Bronstert. 2007. Rainfall-runoff response, event-based runoff coefficients and hydrograph separation. Hydrolog. Sci. J. (52)5: 843-862.
10. 16. Chatterjee, C., R. Jha., A. K. Lohani., R. Kumar and R. Singh. 2002. Estimation of SCS curve number for a basin using rainfall-runoff data. J. Hydraul. Eng. 8(1): 40-49.
11. 17. Gundalia, M and M. Dholakia. 2014. Impact of monthly curve number on daily runoff estimation for Ozat catchment in India. OJMH. 4: 144-155.
12. 18. Hawkins, R. H. 1993. Asymptotic determination of runoff curve number from data. J. Irrig. Drain. E-ASCE. 119: 334-345.
13. 19. Hjelmfelt, A. T. 1980. Empirical investigation of curve number technique. ASCE. 106 (HY9): 1471-1476.
14. 20. Kilgore, J. L. 1997. Development and evaluation of a GIS-based spatially distributed unit hydrograph model. Master degree Thesis, Biological Systems Engineering. Virginia Polytechnic Institute and State University.
15. 21. Kowalik, T and A. Walega. 2015. Estimation of CN parameter for small agricultural watersheds using asymptotic functions. Water. 7:939-955.
16. 22. Landau, S and B. S. Everitt. 2003. A Handbook of Statistical Analyses using SPSS. PP. 1- 339. CRC Press LLC, Chapman and Hall.
17. 23. Lopez Tarazon, J. A., R. J. Batalla., D. Vericat and J. C. Balasch. 2010. Rainfall, runoff and sediment transport relation in a mesoscale mountainous catchment: the river Isabena (Ebro basin). Catena. 82: 23-34.
18. 24. McCuen, R.H. 1998. Hydrologic Analysis and Design. PP. 1-883. Pearson Education, Prentice Hall, Upper Saddle River, New Jersey 07458.
19. 25. Mishra, S. K and V. P. Singh. 1999. Another look at SCS-CN method. J. Hydrol. Eng. 257-264.
20. 26. Moatamednia, M., A. Nohegar., A. Malekian., K, Karimi Zarchi and A. Tavasoli. 2015. Performance of the different models for curve number estimation (Case study: Bar watershed in Khorasan Razavi province, Iran). Ecopersia. 3(3): 1031-1049.
21. 27. Mostafazadeh, R., A. Bahremand and M, Zabihi. 2015. Efficiency evaluation of Diskin method in derivation of Instantaneous Unit Hydrograph in Jafar-Abad watershed, Golestan Province. Ecohydrology. 2(2): 141-150.
22. 28. Neitsch, S. L., J. G. Arnold., J. R. Kiniry., J. R. Williams and K. W. King. 2002. Soil and water assessment tool (SWAT): Theoretical documentation, version 2000. Texas Water Resources Institute, College station, PP. 1-506. TX, TWRI Report TR-191.
23. 29. Ozger, M and Z. Sen. 2007. Triple diagram method for the prediction of wave height and period. Ocean. Eng. 34(7): 1060–1068.
24. 30. Ponce, V. M and R. H. Hawkins. 1996. Runoff curve number: has it reached maturity. J. Hydrol. Eng. 11-19.
25. 31. Raghunath, H. M. 2006. Hydrology: Principles, Analysis and Design. PP. 1-476. New Age International.
26. 32. Sadeghi, S. H. R. and R. Mostafazadeh. 2016. Triple diagram models for changeability evaluation of precipitation and flow discharge for suspended sediment load in different time scales. Env. Earth. Sci. 75: 843. https://doi.org/10.1007/s12665-016-5621-6
27. 33. Sen, Z. 2008. Wadi Hydrology. PP. 1-347. CRC Press.
28. 34. Simanton, J. R., R. H. Hawkins., M. Mohseni-Saravi and K. G. Renard. 1996. Runoff curve number variation with drainage area, Walnut Gulch, Arizona. ASCE. 39(4): 1391-1394.
29. 35. Soulis, K. X and J. D. Valiantzas. 2012. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watershed-the two-CN system approach. Hydrol. Earth. Syst. Sci. 16: 1001-1015.
30. 36. Tedela, N. H., S. C. McCutcheon and T. C. Rasmussen. 2007. Effects of seasonal variation on runoff curve number for selected watersheds of Georgia – preliminary study. GWRC, 27-29 March. Georgia.
31. 37. Tedela, N. H., S. C. McCutcheon., J. L. Campbell., W. T. Swank., M. B. Adams and T. C. Rasmussen. 2012. Curve number for nine mountainous Eastern United States watersheds: seasonal variation and forest cutting. J. of Hydrol. Eng. 17: 1199-1203.
32. 38. U.S.DA. Soil Conservation Service. 1993. National Engineering Handbook, Hydrology (NEH-4), Chapter 4.
33. 39. USDA. Natural Resources Conservation Service. 2004. Estimation of direct runoff from storm rainfall. Part 630 Hydrology. National Engineering Handbook. 79p. Chapter 10.
34. 40. Wanielista, M. P. 1997. Hydrology Water Quantity and Water Quality Control. PP. 1-565. Wiley New York.
35. 41. Xiao, B., Q. H. Wang., J. Fan., F. P. Han and Q. H. Dai. 2011. Application of the SCS-CN model to runoff estimation in a small watershed with high spatial heterogeneity. Pedosphere. 21(6): 738-749.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.