the impact of hydraulic loss on the performance of weirs should not be overlooked. In this study, a laboratory flume measuring 8 meters in length, 0.6 meters in width, and 0.6 meters in height was used to investigate the hydraulic loss of the weirs and their discharge coefficients. The weirs used in this research were of the labyrinth type, featuring both curved and linear designs. Dimensional analysis using the Buckingham method indicated that the discharge coefficient (Cd) relies on parameters such as the hydraulic head ratio (Ht/P), weir shape factor (Sf), hydraulic loss ratio (Hf/P), and Froude number (Fr). The results demonstrated that an increase in hydraulic head leads to a decrease in the discharge coefficient of the weirs. Furthermore, the intensity of flow blade interference over the weirs gradually increases the hydraulic loss with a rising hydraulic head. Hydraulic loss increases up to a certain level of hydraulic head before beginning to decline. Therefore, it can be stated that the hydraulic loss curve for weirs like ARCL exhibits a sinusoidal trend. At a hydraulic head ratio of 0.4, the ARCL weir experiences 227% more hydraulic loss compared to the APKW weir. At a hydraulic head ratio of 0.6, the RCL weir shows 200% more hydraulic loss than the PKW weir. The trend of hydraulic loss variation with increasing Froude numbers for ARCL and RCL weirs is also sinusoidal. The ARCL weir shows the highest hydraulic loss with increasing Froude number compared to the other weirs. All weirs modeled using FLOW-3D software showed values (Cd and Hf/P) that exceeded those from physical modeling, which is significant in terms of safety factors. Moreover, the error rate in numerical modeling varied based on different parameters and conditions, averaging between 10% and 30%. In some cases, labyrinth weirs exhibited higher error rates compared to piano key weirs.
Type of Study:
Research |
Subject:
Ggeneral Received: 2025/01/16 | Accepted: 2025/04/14 | Published: 2025/07/29