Volume 28, Issue 3 (Fall 2024)                   jwss 2024, 28(3): 161-177 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Attaeian B, Teymorie Niakan F, Fattahi B, Zandieh V. Investigation of Changes and Feasibility of Indirect Estimation of Soil Organic Carbon in Rangelands after Wildfire (Case Study: Gonbad Watershed, Hamadan). jwss 2024; 28 (3) :161-177
URL: http://jstnar.iut.ac.ir/article-1-4414-en.html
Department of Natural Engineering, Faculty of Natural Resources and Environment, Malayer University, Malayer, Iran. , attaeian94@gmail.com
Abstract:   (204 Views)
The objective of this study was to investigate the effect of wildfire in the rangelands of the Gonbad region of Hamedan on soil organic carbon storage in two control and fire areas after three years of fire, and the feasibility of using remote sensing in indirect estimation of soil carbon. Therefore, 20 soil surface (0-10cm depth) samples were collected from the burned area and 20 samples from the control area (40 samples in total) by the systematically random method after three years of fire time. Changes in organic carbon, total nitrogen, acidity, and salinity of surface soil were tested by independent t-test between control and fire areas. Then, to investigate the linear relationship between the storage of soil organic carbon with other parameters, the Pearson correlation was used in SPSS v. 26. The results of the independent t-test showed that there was no significant difference in EC, acidity, and soil organic carbon of the control and fire areas, but the amount of total soil nitrogen showed significantly different. The results showed a significant positive correlation was observed between soil organic carbon and total nitrogen at the level of one-hundredth of 0.830 (p< 0.01) in the fire area, and the BI index showed a significant negative correlation of 0.727 (p< 0.05). In the control area, a significant positive relationship was observed between organic carbon and total nitrogen at the rate of 0.627 (p <0.05). The results of processing Landsat 8 images (OLI-TIRS sensor) in the fire area showed that there was a statistically significant relationship between soil organic carbon and light and wetness index obtained from tasseled cap (-0.726 and 0.674, respectively) and PC1 component obtained from principal component analysis and -0.724 (p <.05). These results indicate that it is possible to use tasseled cap images to predict soil organic carbon in fire areas.
Full-Text [PDF 865 kb]   (161 Downloads)    
Type of Study: Research | Subject: Ggeneral
Received: 2024/03/1 | Accepted: 2024/08/20 | Published: 2024/10/31

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb