Volume 25, Issue 3 (Fall 2021)                   jwss 2021, 25(3): 95-114 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abedinzadeh M, Bakhshandeh A, Andarziyan B, Jafari S, Moradi telavat M. Optimization and Management of Water Consumption in SugarCane Using the AquaCrop Simulation Model (Case Study: Amirkabir Industrial Cultivation, Khuzestan). jwss 2021; 25 (3) :95-114
URL: http://jstnar.iut.ac.ir/article-1-4069-en.html
Ramin Khuzestan University of Agriculture Open in Google Translate , m9332013@yahoo.com
Abstract:   (2828 Views)
Iran is located in the dry belt of the earth and is predicted to face water stress in the next half-century. Currently, the area of sugarcane cultivation in Khuzestan is over 85,000 hectares and due to the high water needs of sugarcane and drought conditions, optimization of water consumption and irrigation management is necessary to continue production. Therefore, in this study, the values of soil moisture, canopy cover, biomass yield in five treatments and irrigation levels (start of irrigation at 40%, 50%, 60%, 70%, and 80% soil moisture discharge) during 2 planting dates in the crop year 2015-2016 on sugarcane cultivar CP69-1062 in Amirkabir sugarcane cultivation and industry located in the south of Khuzestan was simulated by AquaCrop model. The measured data on the first culture date (D1) and the second culture date (D2) were used to calibrate and validate the model.  The results of NRMSE statistics in canopy cover simulation in calibration and validation sets with values of 2.1 to 15.6% and 3.8 to 18.3%, respectively, and in biomass simulation with values of 6.2 to 15.2%, and 9.5 to 12.6%, respectively and coefficient of determination (R2), range 0.98 to 0.99 indicated that the high ability of the AquaCrop model in simulation canopy cover and biomass yield. whereas, the values of NRMSE of soil depth moisture in the calibration and validation sets ranged from 11.6 to 23.8, and 12.2 to 22.7, respectively, with a coefficient of determination (R2), 0.73 to 0.96 (calibration) 0.8 to 0.93 (validation) showed less accuracy of the model in the simulation. The best scenario is related to the third proposal that water consumption, water use efficiency, and yield are 1710 mm, 1.53, and 42.27 tons per hectare, respectively, which shows a reduction in water consumption of 360 mm.
Full-Text [PDF 5882 kb]   (1077 Downloads)    
Type of Study: Research | Subject: Ggeneral
Received: 2020/09/7 | Accepted: 2020/12/19 | Published: 2021/12/1

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb