Volume 23, Issue 4 (winter 2020)                   jwss 2020, 23(4): 99-112 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghaeminia A M, Hakimzadeh M A, Taghizadeh-Mehrjardi R, Dehghani F. Quantity, Quality and Capability Assessment of Airborne Salts Fallout on Increasing the Surface Soil Salinity (A Case Study: North of Yazd- Ardakan Plain). jwss 2020; 23 (4) :99-112
URL: http://jstnar.iut.ac.ir/article-1-3790-en.html
1. Department of Arid Land and Desert Management, Faculty of Natural Resources and Desert Studies, Yazd University, Yazd, Iran. , hakim@yazd.ac.ir
Abstract:   (5116 Views)
One of the reasons for soil salinization is the accumulation of salts in it by transmission through water and wind. In order to investigate the phenomenon of transfer of salts with dust in the arid regions of the north of Yazd- Ardakan plain, field samples were taken using 32 MDCO sediments traps with uniform dispersion in an area of 20,000 hectares at some stage in 4 seasons of 2017. After washing the sediment collector with a liter of distilled water in the field and transferring the samples to the laboratory, for the quantitative analysis of saline dust, similar to measuring the Water Electrical Conductivity (ECw), the Total Soluble Solids (TDS) were additionally measured through evaporation technique. The form and distribution of the dust particle size were additionally investigated using a Scanning Electron Microscope (SEM) tool. Within the qualitative examine of salts, effective cations and anions in salinity including Na+, K+, Ca++, Mg++, C1-, HCO-3 and SO-4 were measured The results confirmed that, in general, the fallout was 11.1 g.m-2 of soluble material with dust particles (13.28%) in the course of only 12 months. Particles with a diameter of 5 to 10 microns were the most frequent. Considering the high correlation between C1- and Na+ in the spring, autumn and winter, due to the high correlation between Ca++ and SO-4 in summer dust, sodium chloride (NaCl) and gypsum (CaSO4) 2H2O)), the most abundant composition of dust- containing salts could be expected in these seasons. By determining the percentage of solutes in the fallout dust, it was observed that the impact of the amount of the deposited salt from dust was slight and insignificant in the short time period; with the assumption of no change in the rate of subsidence, it was anticipated that it would explain the poor salinity in non- saline mass soils for up to 10 cm in 72 years. In general, the capability of airborne salt in increasing the soil salinity in the study area can be in long- term periods. Therefore, it is recommended to investigate other environmental effects of this phenomenon in order to identify its hazards.
Full-Text [PDF 819 kb]   (1232 Downloads)    
Type of Study: Research | Subject: Ggeneral
Received: 2018/10/27 | Accepted: 2019/02/24 | Published: 2020/02/29

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb