The effect of the uplift force in the hydraulics structures is against stability. So, determining and controlling this force can be very important. One of the ways to achieve this purpose is to decrease this force by using the hole drains; in this way, we can build perpendicular pipes with different diameters, leading to the durability of the structure. Therefore, an experimental model of concrete dam was constructed in the hydraulic laboratory. The dam's model was divided into five sections by using 4-hole drains with a thickness equal to the dam's foundation. By running experiments with the maximum water level at the upstream, dam hole drains were opened in their position. Hydraulic potential was estimated by using the Piezometer built in the flume body. Finally, by opening some hole drains, the uplift force was calculated from the equipotential lines. Therefore, the best case (which had the minimum force) was determined, which was a/L=0.4, to create the most proper hole drain in the dam foundation. (a: distance of drain to heel and L: length of the dam's foundation). To place the hole drain in this position, by applying the zero potential in this position, the up lift force was increased
Type of Study:
Research |
Subject:
Ggeneral Received: 2016/12/9 | Accepted: 2017/11/29 | Published: 2019/03/15