Volume 22, Issue 2 (Summer 2018)                   jwss 2018, 22(2): 15-27 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sharifan H, Jamali S, Sajadi F. Investigation the Effect of Different Salinity Levels on the Morphological Parameters of Quinoa (Chenopodium quinoa Willd.) under Different Irrigation Regimes. jwss 2018; 22 (2) :15-27
URL: http://jstnar.iut.ac.ir/article-1-3384-en.html
1. Department of Water Engineering, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran. , sa13e12@gmail.com
Abstract:   (9894 Views)
In order to study the effects of different irrigation regimes and different levels of salinity on the growth parameters of Quinoa (Chenopodium quinoa Willd.), this experiment was performed in the research green house of Water Engineering Department, at f Gorgan University of Agricultural Sciences and Natural Resources, during 2016. The experimental design was a factorial with n a randomized complete design in three replications. Treatments included three irrigation levels (100, 75 and 50 percent of water requirements calculated by the evaporation pan class A) and five salinity levels (0.5, 4.3, 8, 11.8, 16 dSm-1). The results showed that the effect of irrigation on the Leaf area index, chlorophylls and RWC (P<0.01) and Leaf length, and width (P<0.05) was significant. The effect of salinity levels on the Leaf area index, chlorophylls, Leaf length and width, RWC, Specific leaf weight (P<0.01) and Leaf petiole length (P<0.05) was significant too. The interaction between irrigation and salinity levels on chlorophylls and RWC (P<0.01) and Leaf width (P<0.05) was significant as well. According to the results, Quinoa had a good tolerance to the elevated levels of deficit irrigation. Decreasing the irrigation levels from 100 to 50 percent of pan evaporation resulted in the reduction of the Leaf area index and RWC to 24.6 and 7.3 percent, respectively. The result also showed that Quinoa had a good tolerance to the elevated levels of salinity, the mixing sea water, and tap water at rate of 30 percent, with control treatment having no significance for all of the parameters. It seems that good stand establishment in the saline soils and water conditions could be insured if proper management is applied in the farms.
Full-Text [PDF 1389 kb]   (4411 Downloads)    
Type of Study: Research | Subject: Ggeneral
Received: 2016/12/2 | Accepted: 2017/05/17 | Published: 2018/09/15

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb