جلد 16، شماره 60 - ( علوم و فنون کشاورزي و منابع طبيعي، علوم آب و خاک-تابستان 1391 )                   جلد 16 شماره 60 صفحات 118-107 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

R. Rezae Arshad, GH. Sayyad, *, M. Mazloom, M. Shorafa, A. Jafarnejady. Comparison of Artificial Neural Networks and Regression Pedotransfer Functions for Predicting Saturated Hydraulic Conductivity in Soils of Khuzestan Province. JWSS 2012; 16 (60) :107-118
URL: http://jstnar.iut.ac.ir/article-1-2310-fa.html
روح اله رضایی ارشد ، غلامعباس صیاد ، مسعود مظلوم ، مهدی شرفا ، علیرضا جعفرنژادی . مقایسه روش‌های شبکه عصبی مصنوعی و رگرسیونی برای پیش‌بینی هدایت هیدرولیکی اشباع خاک‌های استان خوزستان. مجله علوم آب و خاک 1391; 16 (60) :118-107

URL: http://jstnar.iut.ac.ir/article-1-2310-fa.html


، gsayyad@scu.ac.ir
چکیده:   (19646 مشاهده)
اندازه‌گیری مستقیم ویژگی‌های هیدرولیکی خاک وقت‌گیر و پر‌هزینه بوده و تا حدی به علت غیرهمگن بودن خاک و خطاهای آزمایشگاهی غیرقابل اعتماد است. در عوض ویژگی‌های هیدرولیکی خاک می‌تواند از جایگزینی داده‌های زودیافتی مانند بافت خاک و چگالی ظاهری با استفاده از توابع انتقالی به دست آید. شبکه‌های عصبی و رگرسیون آماری از جمله روش‌هایی هستند که برای تخمین توابع انتقالی خاک (PTFs) استفاده می‌شوند. در این پژوهش از شبکه عصبی نوع پرسپترون چند‌لایه (MLP) و مدل-های رگرسیونی حذف تدریجی متغیرها و گام به گام ورود متغیرها برای بسط این توابع برای تخمین هدایت هیدرولیکی اشباع خاک با استفاده از چگالی ظاهری، تخلخل کل و درصد توزیع اندازه ذرات خاک استفاده شد. داده‌ها از 125پروفیل خاک مربوط به مطالعات خاک‌شناسی و اصلاح اراضی موجود در سازمان آب و برق خوزستان تهیه شد. نتایج نشان داد که شبکه MLP با الگوریتم آموزشی بیزین با ضریب تعیین (65/0=2R) و خطای ( 04/0RMSE=) نسبت به مدل‌های رگرسیونی کارایی بهتری در تخمین هدایت هیدرولیکی اشباع خاک داشت.
متن کامل [PDF 357 kb]   (7818 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: عمومی
دریافت: 1391/6/21 | انتشار: 1391/4/25

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله علوم آب و خاک دانشگاه صنعتی اصفهان می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2022 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb