Volume 16, Issue 60 (Summer 2012)                   JWSS 2012, 16(60): 13-23 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

S. Azizpour, P. Fathi, K. Nobakht-Vakili. Simultaneous Estimation of Soil Saturated Hydraulic Conductivity and Effective Porosity Using Intelligent Inverse Problem Approach. JWSS. 2012; 16 (60) :13-23
URL: http://jstnar.iut.ac.ir/article-1-2302-en.html
, p.fathi@uok.ac.ir
Abstract:   (14226 Views)
Soil saturated hydraulic conductivity (k) and effective porosity (f) are the most important parameters to simulate the processes associated with irrigation, drainage, hydrology, leaching and other agricultural and hydrological processes. Present methods to measure these parameters are often difficult, time consuming and costly. Therefore, a method which provides more accurate estimates of these parameters is essential and is considered inevitable. The purpose of this study was simultaneous estimation of k and f using approach inverse problem. In this study, analytical drainage model of Glover-Dam was used to simulate the inverse problem method. Also, genetic algorithm was used as an optimization technique for determination of optimal values of k and f. In order to measure the data required for calibration and evaluation of the proposed inverse problem model, a physical model was designed and constructed in the laboratory. The results showed that the proposed method is good for simultaneosly estimating simultaneous soil k and f. Also with variable f assumption, the prediction error of water table around the drainage was reduced significantly.
Full-Text [PDF 298 kb]   (3127 Downloads)    
Type of Study: Research | Subject: Ggeneral
Received: 2012/09/11 | Published: 2012/07/15

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb