در این تحقیق تدقیق شبکه عصبی فازی (ANFIS) در ترکیب با الگوریتم گرگ خاکستری (GWO-ANFIS) برای اولین بار در پیشبینی تراز آب زیرزمینی با کاربرد دادههای چاپ نشدۀ مشاهدهای ۱۳۹۷-۱۳۷۷ از آبخوان زرندیه ارزیابی شد. سه چاه مشاهدهای بصورت تصادفی برای تجزیه و تحلیل انتخاب شد. بررسی معیارهای ارزیابی نشان داد که از بین سناریوهای بکار رفته با کاربرد مدل ترکیبی، سناریوی D با ترکیب دادههای ورودی، تراز آبزیرزمینی ماه قبل، بارش، دما و بهرهبرداری از آب زیرزمینی بهعنوان سناریو بهینه مدل ترکیبی انتخاب شد. برای سناریو D، چاه مشاهدهای اوّل پارامترهای MAPE، RMSE، NASH بهترتیب مساوی ۰/۲۹، ۰/۴۷ متر و ۰/۹۹ بهدست آمد. برای چاه مشاهدهای دوّم سناریوی C با ترکیب دادههای ورودی، تراز آب زیرزمینی ماه قبل، بارش و بهرهبرداری از آب زیرزمینی بهعنوان سناریو بهینه انتخاب شد و برای همان پارامترها مقادیر ۰/۲۰ ، ۰/۲۶ متر و ۰/۹۹ بهدست آمد. برای چاه سوّم سناریوی A با دادههای ورودی، تراز آب زیرزمینی ماه قبل بهعنوان سناریو بهینه مدل ANFIS-GWO انتخاب شد و مقادیر همان پارامترها برای این سناریو برابر ۰/۲۹، ۰/۴۱ متر و ۰/۹۹ بهدست آمد. بر اساس نتایج، الگوریتم گرگ خاکستری در آموزش مدل ANFIS توانست میانگین خطای پیشبینی را به مقدار ۰۳/ ۰ (RMSE) و ۰/۰۲ (MAPE) متر کاهش و مقدار میانگین NASH را به میزان ۰/۰۱ افزایش و سبب افزایش دقت پیشبینیها شود.