بررسی زمان و غلظت مناسب محلول پاشی اسید جیبریک و ایزوپرپیل استر ۲-۴ دی در افزایش برخی از صفات میوه پرتقال ناول و نارنگی کلماتنی

سپهی رستگار و مجید راحمی٠

(تاریخ دریافت: ۷/۸۵/۱۱/۲۴، تاریخ پذیرش: ۷/۸۵/۱۱/۲۴)

چکیده

پرتقال ناول و نارنگی کلماتنی، جزء ارقام زمردوس محصول می‌شوند. تأخیر در برداشت میوه، باعث کاهش آب و نرم شدن میوه می‌شود. از تنظیم کننده‌های رشد، بای بهبود کیفیت میوه مراکز استفاده شده است. در یوره‌نگار خشازن و غلظت مناسب کاربرد اسیدجیریک و (Clementine) و نارنگی کلماتنی (Navel) ایزوپرپیل استر ۲-۴ دی جهت افزایش آب میوه، سفید و تأخیر در پری میوه پرتقال ناول مورد بررسی قرار گرفت. ارزیابی به صورت فاکتوریل در قالب طرح بلک کامل تصادفی در سه تکرار در سال‌های ۱۳۸۳ و ۱۳۸۴ در یک باغ تجاری واقع در شهرستان جهانگیروفر گرفته. محلول پاشی شاخه‌هایی (شمالی و جنوبی) به کمک از سیکیت ۱۰ لیتری تا حد آب چک انجام شد. در هر دو سال میزان‌های اسیدجیریک (۱۰۰ و ۲۰۰ میلی‌گرم در لیتر) و ایزوپرپیل استر ۲-۴ دی (۰.۸ و ۲۴ میلی‌گرم در لیتر) در سه هزار میلی‌گرم (پرتقال با قطر متوسط ۴۰ میلی‌متر و نارنگی با قطر متوسط ۴۰ میلی‌متر، ۶۰ میلی‌متر و نارنگی با قطر متوسط ۶۰ میلی‌متر) و ۱۴ آبان (پرتقال با قطر متوسط ۸۰ میلی‌متر و نارنگی با قطر متوسط ۸۰ میلی‌متر) استفاده شدند. پرتقال ناول در خاک و میوه‌های نارنگی کلماتنی ۳۵ روز بعد از آخرین محلول پاشی برداشت شدند. نتایج آزمایش نشان داد که پرتقال ناول به مرحله دوم محلول پاشی (۲۵ میوه به قطر متوسط ۶۰ میلی‌متر) و نارنگی کلماتنی به مرحله اول محلول پاشی (۸ میوه به قطر متوسط ۶۰ میلی‌متر) بهترین و اکثریت رنگ نارنگی داشت. اسید جیریک در مقایسه با ایزوپرپیل استر ۴-۲ دی تأثیر بیشتری در افزایش میزان آب پاتورسیموگلیفیل‌ها و نرمی و تأخیر در پری میوه داشت. اسید جیریک در غلظت‌های ۱۵۰ و ۲۰۰ میلی‌گرم در لیتر میوه در مقایسه با واقع، باعث ایجاد میزان آب میوه بود.

واژه‌های کلیدی: پرتقال ناول، نارنگی کلماتنی، اسید جیریک، ایزوپرپیل استر ۲-۴ دی

ارقام مهم کالسیوم، اسیدنیتروژنی الفامید (۱)، رقم کلماتنی طی سال‌های ۱۳۰۹ و ۱۳۰۸ اثر انگشت و به علت مقایسه که در سال ۱۳۲۲ به سرما نشان داد جزء ارقام افزایشی نارنگی شمای قرار یافت. با توجه به این که زمان رسیدن میوه پرتقال ناول و نارنگی کلماتنی به طور وسیعی در کشورهای مختلف جهان کشت می‌گردد، در در مقایسه با سایر ارقام مربوطات از همین تجاری خاصی برخوردند. ناول یکی از

مقدمه

پرتقال ناول و نارنگی کلماتنی به طور وسیعی در کشورهای مختلف جهان کشت می‌گردد. و در مقایسه با سایر ارقام مربوطات از همین تجاری خاصی برخوردند. ناول یکی از

۱. به ترتیب دانشجوی سابق کارشناس ارشد و استاد علوم باغبانی، دانشگاه شهرود، دانشگاه شیراز

Rahemi@shirazu.ac.ir

* مسئول مکاتبات، پست الکترونیکی:
بررسی زمان و فضای مصرف محلول پاشی اسید جیلبریک و ایزوپروپیل استر 24–25

محاسبه شد:

\[ \text{VitC} (\text{mg}/100\text{g}) = \text{correct volum} \times 24 \]

میلی‌گرم اسکورپینیک اسید عادی می‌تواند میلی‌گرم اندفول

اطلاعات حاصل در این طرح استفاده می‌گردد و مایکنی‌ها از طریق آزمون بایک‌دیگر مقایسه شدند و برای

LSD در طول زمان شکل‌ها از ترم افزایش استفاده شد.

نتایج و بحث

درصد آب

نتایج حاصل از تجزیه مکرک دو سال در پریتال ناول نشان داد که اسید جیلبریک 200 میلی‌گرم در لیتر در مرحله اول محلول پاشی و غلظت‌های مختلف اسید جیلبریک در مرحله دوم محلول پاشی میزان آب میوه را نسبت به شاهد در طول اکتمال به طور مبتنی در افزایش دادند. در انسان‌کن‌های محلول پاشی اسید جیلبریک در غلظت‌های مختلف در مرحله دوم محلول پاشی اسید جیلبریک در غلظت‌های 150 و 200 میلی‌گرم در لیتر و 424 میلی‌گرم در لیتر در مرحله اول محلول پاشی

tفاوت معنی‌داری با شاهد ناشان دادند (جدول 2). زمان محلول پاشی در مقایسه غلظت‌های به‌طور متوسط 16 روز بعد استفاده کرده شد. افزایش میزان آب میوه در دستگاه اسکورپینیک که از طریق استفاده می‌تواند به بهبود‌کردن کاهش کم‌درصدی که در این تحقیق اندفول ناول که با استفاده از روش تیتراسیون ایندفول اندازه‌گیری شد. (36) از قبیل اثرات آن‌ها با میوه استفاده می‌گردد. میزان محلول پاشی اسید جیلبریک تشکیل می‌شود در مرحله 10 میلی‌لیتر از آن میوه را با 10 میلی‌لیتر محلول تیتراسیون کننده مخلوط کرده، 5 میلی‌لیتر از آن با محلول اندفول تیتراسیون‌دهنده با زنگی سوپر کر در این‌الذات تیتراسیون مصرفی قرار گرفت و میزان و تنظیم تکرار دو میوه در آب میوه با استفاده از روش بیرکوتز شد و حجم تیتراسیون‌دهنده با

پایش میزان آب میوه در پریتال ناول، هالمی و وانسیا در میزان تغییر رنگ

بوست با شناسایی با استفاده از این فرمول زیر

\[ \text{VitC} (\text{mg}/100\text{g}) = \frac{\text{correct volum} \times 24}{\text{mL of solution}} \]

میلی‌گرم اندفول و استاندارد 10 میلی‌لیتر آب میوه

را با 10 میلی‌لیتر محلول تیتراسیون کننده مخلوط کرده، 5 میلی‌لیتر از آن با محلول اندفول تیتراسیون‌دهنده با زنگی سوپر کر در این‌الذات تیتراسیون مصرفی قرار گرفت و میزان و تنظیم تکرار دو میوه در آب میوه با استفاده از روش بیرکوتز شد و حجم تیتراسیون‌دهنده با

پایش میزان آب میوه در پریتال ناول، هالمی و وانسیا در میزان تغییر رنگ

بوست با شناسایی با استفاده از این فرمول زیر

\[ \text{VitC} (\text{mg}/100\text{g}) = \frac{\text{correct volum} \times 24}{\text{mL of solution}} \]
جدول 1. اثر غلظت و زمان محلول پاشی اسد جیبریلک و ایزوپروپیل استر-2،4- در برخی از متون درصد آب میوه پرتنال ناول محلول پاشی شده در مرحله اول (قطر میوه 47 mm) مرحله دوم (قطر میوه 69 mm) و مرحله سوم (قطر میوه 70 mm) در تجزیه مرکب سال‌های 1383 و 1384.

<table>
<thead>
<tr>
<th>تیمار</th>
<th>(میلی کرم در لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>اسد جیبریلک 100</td>
</tr>
<tr>
<td>اسد جیبریلک 150</td>
<td></td>
</tr>
<tr>
<td>اسد جیبریلک 200</td>
<td></td>
</tr>
<tr>
<td>2,4-D</td>
<td></td>
</tr>
<tr>
<td>2,4-D</td>
<td></td>
</tr>
<tr>
<td>2,4-D</td>
<td></td>
</tr>
</tbody>
</table>

LSD=6.1

در هر ستون، میانگین هایی که دارای حروف مشابه هستند، در سطح احتمال 5٪ آزمون LSD تفاوت معنی‌داری با هم ندارند.

جدول 2. اثر غلظت و زمان محلول پاشی اسد جیبریلک و ایزوپروپیل استر-2،4- در برخی از متون درصد آب میوه نانگی كلماتنی محلول پاشی شده در مرحله اول (قطر میوه 48 mm) و مرحله دوم (قطر میوه 68 mm) و مرحله سوم (قطر میوه 70 mm) در تجزیه مرکب سال‌های 1383 و 1384.

<table>
<thead>
<tr>
<th>تیمار</th>
<th>(میلی کرم در لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>اسد جیبریلک 100</td>
</tr>
<tr>
<td>اسد جیبریلک 150</td>
<td></td>
</tr>
<tr>
<td>اسد جیبریلک 200</td>
<td></td>
</tr>
<tr>
<td>2,4-D</td>
<td></td>
</tr>
<tr>
<td>2,4-D</td>
<td></td>
</tr>
<tr>
<td>2,4-D</td>
<td></td>
</tr>
</tbody>
</table>

LSD=5.7

در هر ستون، میانگین هایی که دارای حروف مشابه هستند، در سطح احتمال 5٪ آزمون LSD تفاوت معنی‌داری با هم ندارند.

دیقی در توجیه افراش آب در تنبه محصول پاشی با اسید جیبریلک پایان نهاده است. با توجه به نتایج اسید جیبریلک در تحقیق گذشته، نتایج آن سبب بهبود ارتباط اندام و آبگیری طولانی تر نسبت به شاهد می شود، در تنبه کاهش آب را به تأثیر اندام می دهد. از طرفی احتمال افراش آب در تنبه افراش سفید میوه و کاراپی آبیگیری می باشد (18، 30 و 35).
نوع زمان وظائف مسح محلول پاشی اسید چربیلک و ایزوپروپیل استر

شکل 1. اثر ظرفیت و زمان محلول پاشی اسید چربیلک و ایزوپروپیل استر بر میزان کلروفیل بر پشت ناول (اف) و ناوتگی کلماتین (ب) محلول پاشی شده در مرحله اول (فقر میوه ناول ۶۵ mm و قطع میوه کلماتین) مرحله بوم (فقر میوه ناول ۶۵ mm و قطع میوه کلماتین) و مرحله سوم (فقر میوه ناول ۶۵ mm و قطع میوه کلماتین) در تجزیه مکرب سالهای ۱۳۸۷ و ۱۳۸۸. میانگین‌های که در هر ستون دارای حروف مشترک هستند در سطح احتمال ٥% آزمون اختلاف معنی‌داری ندارند. LSD اول و دوم محلول پاشی میزان کلروفیل پوست را نسبت به شاهد در سطح احتمال ٥% افزایش دادند (شکل ١- اف). در نارگی کلماتین اسید چربیلک در غلظت‌های ۱۵۰ و ۲۰۰ میلی گرم در لیتر در مرحله اول و دوم و غلظت ۱۰۰ میلی‌گرم در لیتر در مرحله دوم محلول پاشی در سطح احتمال ٥% برای افزایش میزان کلروفیل پوست میوه شبدند (شکل ١- ب). پرو و همکاران (١۶) در ۲۰۰ میلی‌گرم لیتر اسید چربیلک در مرحله اول و دوم محلول پاشی میوه شبدند. در نارگی کلماتین اسید چربیلک در غلظت‌های ۱۵۰ و ۲۰۰ میلی‌گرم در لیتر در مرحله اول و دوم و غلظت ۱۰۰ میلی‌گرم در لیتر در مرحله دوم محلول پاشی در سطح احتمال ٥% برای افزایش میزان کلروفیل پوست میوه شبدند (شکل ١- ب). پرو و همکاران (١۶) در ۲۰۰ میلی‌گرم لیتر اسید چربیلک در مرحله اول و دوم محلول پاشی میوه شبدند. در نارگی کلماتین اسید چربیلک در غلظت‌های ۱۵۰ و ۲۰۰ میلی‌گرم در لیتر در مرحله اول و دوم و غلظت ۱۰۰ میلی‌گرم در لیتر در مرحله دوم محلول پاشی در سطح احتمال ٥% برای افزایش میزان کلروفیل پوست میوه شبدند (شکل ١- ب). پرو و همکاران (١۶) در ۲۰۰ میلی‌گرم لیتر اسید چربیلک در مرحله اول و دوم محلول پاشی میوه شبدند. در نارگی کلماتین اسید چربیلک در غلظت‌های ۱۵۰ و ۲۰۰ میلی‌گرم در لیتر در مرحله اول و دوم و غلظت ۱۰۰ میلی‌گرم در لیتر در مرحله دوم محلول پاشی در سطح احتمال ٥% برای افزایش میزان کلروفیل پوست میوه شبدند (شکل ١- ب). پرو و همکاران (١۶) در ۲۰۰ میلی‌گرم لیتر اسید چربیلک در مرحله اول و دوم محلول پاشی میوه شبدند. در نارگی کلماتین اسید چربیلک در غلظت‌های ۱۵۰ و ۲۰۰ میلی‌گرم در لیتر در مرحله اول و دوم و غلظت ۱۰۰ میلی‌گرم در لیتر در مرحله دوم محلول پاشی در سطح احتمال ٥% برای افزایش میزان کلروفیل پوست میوه شبدند (شکل ١- ب). پرو و همکاران (١۶) در ۲۰۰ میلی‌گرم لیتر اسید چربیلک در مرحله اول و دوم محلول پاشی میوه شبدند. در نارگی کلماتین اسید چربیلک در غلظت‌های ۱۵۰ و ۲۰۰ میلی‌گرم در لیتر در مرحله اول و دوم و غلظت ۱۰۰ میلی‌گرم در لیتر در مرحله دوم محلول پاشی در سطح احتمال ٥% برای افزایش میزان کلروفیل پوست میوه شبدند (شکل ١- ب). پرو و همکاران (١۶) در ۲۰۰ میلی‌گرم لیتر اسید چربیلک در مرحله اول و دوم محلول پاشی میوه شبدند. در نارگی کلماتین اسید چربیلک در غلظت‌های ۱۵۰ و ۲۰۰ میلی‌گرم در لیتر در مرحله اول و دوم و غلظت ۱۰۰ میلی‌گرم در لیتر در مرحله دوم محلول پاشی در سطح احتمال ٥% برای افزایش میزان کلروفیل پوست میوه شبدند (شکل ١- ب). پرو و همکاران (١۶) در ۲۰
جدول 3: اندازه میوه و زمان محلول پاشی اسید چربیک و ایزوپروپیل استر 2,4-دی بر میزان تغییر شکل (سنگی میلی‌متر)

میوه پرتقال ناول محلول پاشی شده در مرحله اول (قطر میوه 64 mm) مرحله دوم (قطر میوه 69 mm) و مرحله سوم (قطر میوه 72 mm) در تعیین مركب سالهای 1383 و 1384 و

<table>
<thead>
<tr>
<th>تیمار</th>
<th>(میلی‌گرم در لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>اسید چربیک 100</td>
</tr>
<tr>
<td>اسید چربیک 150</td>
<td></td>
</tr>
<tr>
<td>اسید چربیک 200</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2,4-D</td>
</tr>
<tr>
<td>16</td>
<td>2,4-D</td>
</tr>
<tr>
<td>22</td>
<td>2,4-D</td>
</tr>
</tbody>
</table>

LSD = 8/12

dر هر ستون، میانگین‌هایی که دارای حروف مشابهی هستند، در سطح احتمال 5% آزمون تفاوت معنی‌داری با هم ندارند.

تغییر شکل میوه (سنگی)
نتایج نشان داد که در پرتقال ناول اسید چربیک در غلظت‌های 150 و 200 میلی‌گرم در لیتر در مرحله اول محلول‌پاشی و 100 میلی‌گرم در لیتر در مرحله دوم محلول‌پاشی سطح اول در مرحله اول محلول پاشی دانه در مرحله دوم میوه نسبت به لیزر است بود. این میوهها در اول محلول پاشی نسبت به لیزر در مرحله اول محلول پاشی دانه در مرحله دوم میوه نسبت به لیزر نسبت به شاهد شفاف بود. در این تعداد کلماتی اسید چربیک 200 میلی‌گرم در لیتر در مرحله اول و 24 میلی‌گرم در لیتر در مرحله دوم و دو 34 میلی‌گرم در لیتر در مرحله اول و دوم باعث افزایش معنی‌دار طول میوه شدند.

اسید چربیک از طریق تأثیر زمان رسیدن میوه و در نتیجه جویانه ماندن میوه از نظر فیزیولوژی فورسیت به‌طوری که به‌طور زیاد و افزایش آب و اندازه میوه فراهم می‌نماید. نتایج به دست آمده در این پژوهش با نتایج سابیر پژوهشگران مطابقت دارد (9, 10, 11, 12, 13, 14, 15, 16, 17). آلیمیدا و همکاران گزارش کردند که (9, 12, 13, 14) باعث افزایش اندازه میوه پرتقال با مقدار همچنین مقدس و رحمی (7) نشان دادند که 0.4-0.6 دی طول قطع تارکی محل جهرم را افزایش می‌دهد. کاربرد
جدول ۲ اثر غلظت و زمان محلول پاشی اسید چربیک و ایزوپروپیل استر ۲-۴- دی بر میزان تغییر شکل (سفتی میلی‌تر) میوه‌های کلماتین محلول پاشی شده در مرحله اول (فقط میوه (mm) مرحله دوم (فقط میوه (mm) و مرحله سوم (فقط میوه (mm) در تجزیه مرکب سالهای ۱۳۸۳ و ۱۳۸۴.

<table>
<thead>
<tr>
<th>مرحله محلول پاشی (فقط میوه (mm)</th>
<th>مرحله دوم (۲۸)</th>
<th>مرحله اول (۴۶)</th>
<th>تبیان (میلی‌گرم در لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>۳/۱ a</td>
<td>۳/۱ a</td>
<td>اسید چربیک</td>
</tr>
<tr>
<td></td>
<td>۲/۵ a-b</td>
<td>۲/۲ a-b</td>
<td>اسید چربیک</td>
</tr>
<tr>
<td></td>
<td>۲/۲ a-b</td>
<td>۲/۱ a-b</td>
<td>اسید چربیک</td>
</tr>
<tr>
<td></td>
<td>۲/۵ a-b</td>
<td>۲/۸ a</td>
<td>۲/۰ b-c</td>
</tr>
<tr>
<td></td>
<td>۲/۵ a-b</td>
<td>۲/۸ a</td>
<td>۲/۰ b-c</td>
</tr>
<tr>
<td></td>
<td>۲/۸ a</td>
<td>۱۶</td>
<td>۲,۴-D</td>
</tr>
<tr>
<td></td>
<td>۲/۸ a</td>
<td>۲۴</td>
<td>۲,۴-D</td>
</tr>
<tr>
<td>LSD=۲/۵/۸</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در هر ستون، میانگین‌هایی که دارای حروف مشابه هستند، در سطح احتمال ۵/آزمون LSD تفاوت معنی‌داری با هم ندارند.

شکل ۲ اثر غلظت و زمان محلول پاشی اسید چربیک و ایزوپروپیل استر ۲-۴- دی بر طول (اف) و قطر میوه (ب) پرتاب نال محلول پاشی شده در مرحله اول (فقط میوه (mm) مرحله دوم (فقط میوه (mm) و مرحله سوم (فقط میوه (mm) در تجزیه مرکب سالهای ۱۳۸۳ و ۱۳۸۴. میانگین‌هایی که در هر ستون دارای حروف مشابه هستند در سطح احتمال ۵/آزمون LSD اختلاف معنی‌داری ندارند.

\[ P=0.05 \]
شکل 3: اثر غلظت و زمان محلول با سید چربیلیک و ایزوپروپیل استر 4-دی بر طول (اف) و قطر (ب) میوه نارنگی کلمناتی محلول
پاشی شده در مرحله اول (قطر میوه 42 mm) و مرحله دوم (قطر میوه 44 mm) در محیط مرکب سالهای 1383 و 1384. میانگین های که در هر ستون دارای حروف مشترک هستند در سطح احتمال 5% آزمون LSD اختلاف معنی‌داری ندارند.

در سطح احتمال 5% مشاهده نشد (نتایج ارائه نشده است).
در تارنگی کلمناتی غلظت‌های 150 و 200 میلی گرم در لیتر در مرحله اول و دوم محلول پاشی باعث کاهش معنی‌دار درصد پوست میوه نسبت به شاهد در سطح احتمال 5% P<0.05 شد. هم چنین از تیمارهای 2-دی تفاوت معنی‌داری نسبت به شاهد نشان ندادند (جدول 5). بنا براین هم نوع میوه و هم زمان محلول باعث مهم می‌باشد زیرا تفاوت بین شاهد و درصد پوست میوه در مرحله سوم محلول پاشی دیده نشد. پژوهشکاران (20) نشان
جدول 5. اثر غلظت و زمان محلول باسی اسید چربیلیک و ایزوپروپیل استر 4-دو میزان درصد پوست میوه نارنگی کلمناتین محلول باسی شده در مرحله اول (قطر میوه 64 mm) و مرحله سوم (قطر میوه 70 mm) تجزیه مركب سالهای 1363 و 1384.

<table>
<thead>
<tr>
<th>زمان محلول باسی (قطر میوه (mm))</th>
<th>مرحله دور</th>
<th>مرحله اول</th>
<th>تیمار (میلی گرم در لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(50)</td>
<td>(28)</td>
<td></td>
</tr>
<tr>
<td>35/47</td>
<td>35/43</td>
<td>35/43</td>
<td>100</td>
</tr>
<tr>
<td>37/48</td>
<td>34/45</td>
<td>30/42</td>
<td>75</td>
</tr>
<tr>
<td>39/51</td>
<td>37/48</td>
<td>31/45</td>
<td>50</td>
</tr>
<tr>
<td>41/52</td>
<td>39/50</td>
<td>30/45</td>
<td>25</td>
</tr>
<tr>
<td>43/54</td>
<td>37/48</td>
<td>30/45</td>
<td>20</td>
</tr>
<tr>
<td>LSD=7.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در هر ستون، میانگین‌هایی که دارای حروف مشابهی هستند، در سطح احتمال 5% آزمون LSD تفاوت معنی‌داری با هم ندارند.

است که پیوست Ra به تأثیر می‌اندازد (26.2). تأثیر مشخصی بر درصد پوست میوه‌های نارنگی کلمناتین و پرفتال ناول نداشت. گزارش‌هایی نیز مبنی بر تأثیر این نتیجه کننده‌ای بوده درصد پوست مركبات مشاهده نشد است.

دانند که محلول باسی با اسید چربیلیک قبل از تغییر رنگ، درصد پوست نارنگی Ra کاهش داد. نتایج به دست آمده در Sunburst این پژوهش با تحقیقات دیگر پژوهشگران مطابقت دارد (19 و 33). اسید چربیلیک Ra پوست Ra کند نمی‌نماید و به همین دلیل ممکن است افزایش کیفیت مورد استفاده.

منابع مورد استفاده

1. خوئینی، س. 1371. تغییرات محلول مخلوط. مؤسسه تحقیقات آب و خاک، مرکز تحقیقات کشاورزی مازندران.
2. فتوحی قروینی، ر. 1377. تغییرات محلول مخلوط در ایران. انتشارات دانشگاه گیلان.
3. لاهمی، م. 1384. زراعت و راهکارهای 1387. انتشارات دانشگاه فردوسی مشهد.
4. مقدسی، م. و. 1382. اثرات ایزوپروپیل استر 2.4-دو کلروفنکس استر آسید اسید بر افزایش و جلوگیری از ریزش قبل از بروز نارنگی محلول محلول مخلوط. مجله علمی کشاورزی ایران (1342): 425-429
gibberellic acid. Plant Growth Reg. 11:75-80.


