تأثیر سطح مختلف آبیاری، نیتروژن و تراکم بوته بر عملکرد اجزای عملکرد و انتقال مجدد مواد فتوستزی درت دانهای در شرایط آب و هواپی خوزستان

شهرام لک۲، احمد نادری۳، سید عطاء الله سادات۲، امیر آیینه بنده۲، قربان تورمهدی۴ و سید هاشم موسوی۳

(تاریخ دریافت: ۸/۷/۹۴ ؛ تاریخ پذیرش: ۸۵/۱۱/۲۲)

چکیده
به منظور بررسی آثار سطح مختلف آبیاری، نیتروژن و تراکم بوته بر عملکرد اجزای عملکرد و انتقال مجدد مواد خشک ذخیره‌ی دانه‌ای در تپه‌های (هیر) نیک‌گل کراس (التی) پژوهشی در ناحیه علم کشاورزی و منابع طبیعی خوزستان انجام شد. این پژوهش شامل سه آزمایش به صورت کرت‌های خرد شده به‌نحوی که تیمار اول دارای سطح نیتروژن زایمانی، تیمار دوم دارای تراکم بوته و تیمار سوم دارای تراکم بوته و نیتروژن مطلوبی بود و برای آزمایش در دو شرایط بی‌هوای و بی‌هوای محلول انجام شد. نتایج نشان داد که تأثیرات کمبود آب، نیتروژن و تراکم بوته بر عملکرد و انتقال مجدد مواد خشک دانه‌ای در شرایط آب و هواپی خوزستان بسیار قابل توجه بود. سپس این پژوهش نشان داد که در شرایط آب و هواپی خوزستان تأثیرات کمبود آب، نیتروژن و تراکم بوته بر عملکرد و انتقال مجدد مواد خشک دانه‌ای در شرایط آب و هواپی خوزستان بسیار قابل توجه بود.

1. دانشجوی دکتری فیزیولوژی گیاهان زراعی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات اهواز.
2. استاد از رازهای و اصلاح نباتات، دانشگاه کشاورزی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات اهواز.
3. به ترتیب استاد و کارشناس ارشد رازهای و اصلاح نباتات، دانشگاه کشاورزی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات اهواز.
4. استاد از رازهای و اصلاح نباتات، دانشگاه کشاورزی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات اهواز.
5. استاد از رازهای و اصلاح نباتات، دانشگاه کشاورزی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات اهواز.

شماره لک l، احمد نادری، سید عطاء الله سادات، امیر آیینه بنده، قربان تورمهدی و سید هاشم موسوی

* مسئول مکاتبات، پست الکترونیکی: sh_lak@yahoo.com
دانشجویانی که در مورد این موضوعات بیشتری در مورد آنها مطالعه کرده‌اند، می‌توانند به‌طور مفصل‌تر بررسی کنند. در زمانی که این مقاله منتشر می‌شود، همچنین باید به‌خاطر این‌که در زمینه‌های مختلف فیزیک، شیمی و ارتباطات بیشتری در مورد این موضوعات به‌طور مفصل‌تر بررسی کنند.

بر اساس نظرات شرکت‌کنندگان، این مقاله به طور کامل می‌تواند در زمینه‌های مختلف از جمله ارتباطات، فیزیک و شیمی به کاربردی و ارزشمندی پردازد. در این جمعیت، همچنین باید به‌خاطر این‌که در زمینه‌های مختلف از جمله ارتباطات، فیزیک و شیمی به کاربردی و ارزشمندی پردازد. در این جمعیت، همچنین باید به‌خاطر این‌که در زمینه‌های مختلف از جمله ارتباطات، فیزیک و شیمی به کاربردی و ارزشمندی پردازد.
هدف از انجام این پژوهش ارزیابی عملکرد دانه و ماده خشکی درت سیستم کرأس 7/4 تحت تیمارهای مختلف آبیاری، نیتروژن و تراکم بودن و اثرات متقابل آنها و شناخت بخشی از تغییراتی که گیاه جهت مقابله با آثار منفی نشان در فرآیندهای منابعی که ایجاد می‌نماید، جهت استفاده در برنامه‌های به زراعت می‌پندان با به راه‌کارهای مناسب جهت افزایش کارایی استفاده از منابع و کاهش هزینه‌ها دست یافته.

ماده و روش‌ها

این پژوهش در تابستان 94 در مزرعه تحقیقاتی دانشگاه علوم کشاورزی و منابع طبیعی خوزستان انجام گردید. خاک خاک یکی از منابع آبیاری اصلی از اندیشور، در اثر نیتروژن و تراکم بودن به عنوان تیمارهای مختلف اعمال گردید.

تیمارهای تعریف شده و زمان‌های تزریق نیتروژن:

<table>
<thead>
<tr>
<th>تیمار</th>
<th>زمینه نیتروژن</th>
<th>زمان تزریق نیتروژن</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2/3</td>
<td>20</td>
</tr>
<tr>
<td>B</td>
<td>2/3</td>
<td>30</td>
</tr>
<tr>
<td>C</td>
<td>2/3</td>
<td>40</td>
</tr>
</tbody>
</table>

درصد طرفیت زراعی در قالب آزمایش و اجرای آزمایش:

1. درصد طرفیت زراعی در قالب آزمایش اجرا گردید.
2. برای اجرای این آزمایش، دوازده جفت گیاه به دو گروه تقسیم شدند.
3. کاهش گیاه در هر گروه با محاسبه طرفیت زراعی انجام گردید.

جستجوی ارتباطات بین تیمارهای مختلف و عوامل مختلف:

1. تیمارها و عوامل مختلف در قالب آزمایش اجرا گردید.
2. کاهش گیاه در هر گروه با محاسبه طرفیت زراعی انجام گردید.
3. جستجوی ارتباطات بین تیمارهای مختلف و عوامل مختلف در قالب آزمایش اجرا گردید.

گزارش نهایی:

درصد طرفیت زراعی در قالب آزمایش اجرا گردید.

1. درصد طرفیت زراعی در قالب آزمایش اجرا گردید.
2. برای اجرای این آزمایش، دوازده جفت گیاه به دو گروه تقسیم شدند.
3. کاهش گیاه در هر گروه با محاسبه طرفیت زراعی انجام گردید.

جستجوی ارتباطات بین تیمارهای مختلف و عوامل مختلف:

1. تیمارها و عوامل مختلف در قالب آزمایش اجرا گردید.
2. کاهش گیاه در هر گروه با محاسبه طرفیت زراعی انجام گردید.
3. جستجوی ارتباطات بین تیمارهای مختلف و عوامل مختلف در قالب آزمایش اجرا گردید.

گزارش نهایی:

1. درصد طرفیت زراعی در قالب آزمایش اجرا گردید.
2. برای اجرای این آزمایش، دوازده جفت گیاه به دو گروه تقسیم شدند.
3. کاهش گیاه در هر گروه با محاسبه طرفیت زراعی انجام گردید.

جستجوی ارتباطات بین تیمارهای مختلف و عوامل مختلف:

1. تیمارها و عوامل مختلف در قالب آزمایش اجرا گردید.
2. کاهش گیاه در هر گروه با محاسبه طرفیت زراعی انجام گردید.
3. جستجوی ارتباطات بین تیمارهای مختلف و عوامل مختلف در قالب آزمایش اجرا گردید.

گزارش نهایی:

1. درصد طرفیت زراعی در قالب آزمایش اجرا گردید.
2. برای اجرای این آزمایش، دوازده جفت گیاه به دو گروه تقسیم شدند.
3. کاهش گیاه در هر گروه با محاسبه طرفیت زراعی انجام گردید.

جستجوی ارتباطات بین تیمارهای مختلف و عوامل مختلف:

1. تیمارها و عوامل مختلف در قالب آزمایش اجرا گردید.
2. کاهش گیاه در هر گروه با محاسبه طرفیت زراعی انجام گردید.
3. جستجوی ارتباطات بین تیمارهای مختلف و عوامل مختلف در قالب آزمایش اجرا گردید.

گزارش نهایی:

1. درصد طرفیت زراعی در قالب آزمایش اجرا گردید.
2. برای اجرای این آزمایش، دوازده جفت گیاه به دو گروه تقسیم شدند.
3. کاهش گیاه در هر گروه با محاسبه طرفیت زراعی انجام گردید.

جستجوی ارتباطات بین تیمارهای مختلف و عوامل مختلف:

1. تیمارها و عوامل مختلف در قالب آزمایش اجرا گردید.
2. کاهش گیاه در هر گروه با محاسبه طرفیت زراعی انجام گردید.
3. جستجوی ارتباطات بین تیمارهای مختلف و عوامل مختلف در قالب آزمایش اجرا گردید.

گزارش نهایی:

1. درصد طرفیت زراعی در قالب آزمایش اجرا گردید.
2. برای اجرای این آزمایش، دوازده جفت گیاه به دو گروه تقسیم شدند.
3. کاهش گیاه در هر گروه با محاسبه طرفیت زراعی انجام گردید.

جستجوی ارتباطات بین تیمارهای مختلف و عوامل مختلف:

1. تیمارها و عوامل مختلف در قالب آزمایش اجرا گردید.
2. کاهش گیاه در هر گروه با محاسبه طرفیت زراعی انجام گردید.
3. جستجوی ارتباطات بین تیمارهای مختلف و عوامل مختلف در قالب آزمایش اجرا گردید.

گزارش نهایی:

1. درصد طرفیت زراعی در قالب آزمایش اجرا گردید.
2. برای اجرای این آزمایش، دوازده جفت گیاه به دو گروه تقسیم شدند.
3. کاهش گیاه در هر گروه با محاسبه طرفیت زراعی انجام گردید.

جستجوی ارتباطات بین تیمارهای مختلف و عوامل مختلف:

1. تیمارها و عوامل مختلف در قالب آزمایش اجرا گردید.
2. کاهش گیاه در هر گروه با محاسبه طرفیت زراعی انجام گردید.
3. جستجوی ارتباطات بین تیمارهای مختلف و عوامل مختلف در قالب آزمایش اجرا گردید.

گزارش نهایی:

1. درصد طرفیت زراعی در قالب آزمایش اجرا گردید.
2. برای اجرای این آزمایش، دوازده جفت گیاه به دو گروه تقسیم شدند.
3. کاهش گیاه در هر گروه با محاسبه طرفیت زراعی انجام گردید.

جستجوی ارتباطات بین تیمارهای مختلف و عوامل مختلف:

1. تیمارها و عوامل مختلف در قالب آزمایش اجرا گردید.
2. کاهش گیاه در هر گروه با محاسبه طرفیت زراعی انجام گردید.
3. جستجوی ارتباطات بین تیمارهای مختلف و عوامل مختلف در قالب آزمایش اجرا گردید.

گزارش نهایی:
۲۸ ساعت خشکی گردد و با توجه به وزن اولیه کاه و دانه، عملکرد ماده خشک کل و عملکرد دانه بر اساس وزن خشک آنها تصحیح شد. محیوت نسبی آب بر، میزان و کارایی انتقال مجدد و همین انتقال مجدد در تولید عملکرد دانه با استفاده از روابط زیر محاسبه گردیدند (۱ و ۲):

\[V = \frac{(FC - 0m) \times D \times D_{Root} \times A}{E_i} \]

حجم آب آپاری بر حسب مترمکعب درصد رطوبت وزنی خاک در حد طرفیت زراعی = FC
درصد رطوبت وزنی خاک قبل از آپاری = 0m
وزن مخصوص ظاهری خاک (گرم بر متر مکعب) = ρ0
مساحت آپاری شده بر حسب متر مربع = A
عمق توسه ریشه بر حسب متر = D_{Root}
رازنامه آپاری

بدین ترتیب حجم آب مورد نیاز در هر مترپایه آپاری در هر تیمار برای هر خط کاشت محاسبه و براساس کارایی توزیع آب ۹۰ درصد با استفاده از پمپ و کنترل به صورت یکنواخت توزیع گردید. در طول دوره هیدر، میزان‌ها به فاصله‌های هر ده روز به صورت دستی انجام گرفت. در محله‌ی آبی‌اولین به‌کمک (کنال‌های دهنده)، جهت تعیین شاخص سطح برگ و عملکرد ماده خشک، پس از حدف حواشی نام گیاه از خطوط نمونه برداری هر کرت فرعی برداشت شد. جهت محاسبه شاخص سطح برگ، از کلیه برگ‌های نام گیاه برداشت آنها استفاده گردید. سطح هر برگ با استفاده از معادله زیر محاسبه شد (۶ و ۷):

\[S = \frac{4}{204877(L/W) + 0.0000251(L/W)^7} \]

در آزمایش‌های پذیرانه، وزن چندان‌اندازه‌ای داشتند که فرصت برداری فرضی نموده می‌شد و محدودیت دوم (۲۰۴۸۷۷(L/W) + ۰.۰۰۰۰۲۵۱(L/W)^۷) نیز به ترتیب مجموع فضای مورد نظر گزارش شد و جهت انجام انتشار‌های مورد نظر به آزمایشگاه متقابل گردید.
در آزمایشگاه‌های بعلاوه جهت تعیین عملکردی و اجزای عملکردی دانه جدا شدند. به‌منظور تعیین درصد رطوبت کاه و دانه محاسبه عملکرد ماده خشک کل و دانه، به‌کمک نمونه‌های دسته‌بندی و دانه‌ها محاسبه گردید.

دانه‌ها و دانه‌هایی که برداشت و در دمای ۲۲ درجه سانتی‌گراد به‌طور مدت
تأثير سطوح مختلف آبیاری، نیتروژن و تراکم بونه بر عملکرد اجزای...
جدول 3 مقایسه میانگین‌های اثرات متغیر آبیاری و نیتروژن بر شاخه‌های سطح برگ مرحله کاکل‌دهی و میزان انتقال مجدد مواد
تأثیر سطوح مختلف آبگیری، نیتروژن و تراکم بوتی به علائم درمانی

<table>
<thead>
<tr>
<th>شاخص سطح برك مرحله کاکلده</th>
<th>میزان انتقال مجدد مواد فتوستژی (گرم در متر مربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td>آبیاری × نیتروژن (کیلوگرم در هکتار)</td>
<td></td>
</tr>
<tr>
<td>154/54bc</td>
<td>428</td>
</tr>
<tr>
<td>154/44bc</td>
<td>428</td>
</tr>
<tr>
<td>149/54</td>
<td>240</td>
</tr>
<tr>
<td>150/44</td>
<td>240</td>
</tr>
<tr>
<td>149/34</td>
<td>240</td>
</tr>
<tr>
<td>148/14</td>
<td>240</td>
</tr>
<tr>
<td>137/14</td>
<td>240</td>
</tr>
<tr>
<td>155/54</td>
<td>240</td>
</tr>
</tbody>
</table>

نَوَانِیِ نَگه ِ جَذب نیترات از خاک می‌شود.
تأثیر تراکم بر شاخص سطح برق معنی‌دار بود (جدول 1).
پیشین نشان دهنده بروز نرمال تراکم تعامل داشت (جدول 2). افزایش تراکم بوتی با کاهش سطح برق در هر بروز و افزایش شاخص سطح برق هر متر است (17). زیستو و گویچی (9) نیز ارتقای حداکثر شاخص سطح برق را با افزایش تراکم بوته‌ها در تمام داشتند که در پیشین تراکم شاخص سطح برق به 3 هکتار برآورد به 3/17/17 رسید. این نتایج مقابل آبیاری و تراکم و نیتروژن و تراکم بر شاخص سطح برق معنی‌دار بود (جدول 1). در هر سطح آبیاری و یا نیتروژن مصرفی، افزایش تراکم موجب افزایش شاخص سطح برق می‌گردد. هر چند افزایش تراکم در شرایط نشان دهنده شاخص و یا هنگام مصرف معادل کمتر کود، تأثیر مثبت چندنی بر میزان دمکرو نتایج داشت (جدول 4 و 5). افزایش تراکم موجب افزایش معنی‌دار شاخص برق تا گردید. طوری که پیشین شاخص برق به 3/58 به پیشین تراکم تحت آبیاری مطلق تعامل داشت (جدول 2). به کارگری تراکم‌های دیگر در مقایسه به سطح برق در مقایسه با سبب افزایش گردید (جدول 5). این نتایج شناسد که افزایش تراکم به شاخص برق باعث گردید. نشان داد که افزایش تراکم نیز به شاخص برق موجب شد. در تحقیق افزایش مصرف نیتروژن و در مقایسه با سبب افزایش گردید (جدول 5). نیز کارگری نیاز به کمین‌سازی آب در خاک و شرایط معادلی در جدول 2. مقایسه میناهای ارثِ مرحله کاکلده و تراکم بر عملکرد اجرای...
از آزمون دانکن

<table>
<thead>
<tr>
<th>تیمار</th>
<th>عمکرکده دانه (گرم در متر مربع)</th>
<th>انباری×تراکم (بوتنه در متر مربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td>آبیر</td>
<td>475/8/948</td>
<td>8</td>
</tr>
<tr>
<td>آبیر</td>
<td>229/6/943</td>
<td>7/5</td>
</tr>
<tr>
<td>آبیر</td>
<td>215/4/943</td>
<td>9</td>
</tr>
<tr>
<td>آبیر</td>
<td>324/6/942</td>
<td>6</td>
</tr>
<tr>
<td>آبیر</td>
<td>177/6/942</td>
<td>7/5</td>
</tr>
<tr>
<td>آبیر</td>
<td>180/3/942</td>
<td>9</td>
</tr>
<tr>
<td>آبیر</td>
<td>123/1/941</td>
<td>6</td>
</tr>
<tr>
<td>آبیر</td>
<td>211/2/941</td>
<td>7/5</td>
</tr>
<tr>
<td>آبیر</td>
<td>124/8/943</td>
<td>9</td>
</tr>
</tbody>
</table>

جدول 5. مقایسه میانگین‌های اثربخشی متغیر نیتروژن و تراکم بوته بر عملکرد دانه و ماده خشک. شاخص سطح برگ مرحله کاکلده و سهم انقلاب مجدید با استفاده از آزمون دانکن

<table>
<thead>
<tr>
<th>سهم انقلاب مجدد مواد فتوسنتزی (درصد)</th>
<th>شاخص سطح برگ</th>
<th>عملکرکده ماده خشک (گرم در متر مربع)</th>
<th>عملکرکده دانه (گرم در متر مربع)</th>
<th>تیمار</th>
<th>نیتروژن (تراکم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/11</td>
<td>3/106</td>
<td>1252/0/0/0</td>
<td>753/8/0/0</td>
<td>6</td>
<td>45/1/0/0</td>
</tr>
<tr>
<td>18/11</td>
<td>3/106</td>
<td>1555/0/0/1</td>
<td>753/8/0/0</td>
<td>6</td>
<td>45/1/0/0</td>
</tr>
<tr>
<td>18/11</td>
<td>3/106</td>
<td>1653/0/0/1</td>
<td>753/8/0/0</td>
<td>6</td>
<td>45/1/0/0</td>
</tr>
</tbody>
</table>

* در هر ستون تفاوت بین دو میانگین که یک حرف مشترک دارند در سطح احتمال خطای پنج درصد معنی‌دار نیست.

* مطلق و یا همراه با مصرف مقدار زیاد نیتروژن سودمند بوده و عکس در سایر شرایط اثر چندانی بر افزایش عکس فتوسنتز برگ نخواهد داشت. وقتی آب به اندازه کافی فراهم آمد و یا تغییر گیاه با نیتروژن کافی صورت گیرد، اثرات منفی افزایش نیتروژن بر سطح برگ تک بوته کاهش یافته و در مجموع با افزایش تراکم شاخص سطح برگ افزایش می‌یابد.
نتایج تأثیر سطوح مختلف آبیاری، نیتریسون و تراکم بیوت بر عملکرد اجاعی...

گردد. این کاهش عمداً به دلیل کاهش تعادل دانه در بیول و وزن هزار دانه بود (جدول 1). با توجه به تفاوت بین تراکم‌های مختلف از نظر عملکرد دانه بسیار معنادار تشخیص داده شد (جدول 1). انتظار تعادل بوده در واحد سطح افزایش قابل متلاطم عملکرد دانه همراه بود. این افزایش عملکرد به واسطه افزایش تعادل بیول در واحد سطح بود و چرا که افزایش تراکم و افزایش تعادل گیاه در واحد سطح، تعادل بیول در واحد سطح نیز افزایش پیدا در حالت که در جهت دیگر عملکرد دانه معنادار تعادل دانه در بیول و وزن هزار دانه کاهش نشان داد. (جدول 2). کمتر بودن دیگره، کروبی‌های عمداً قبل از مرحله گردش افسانه، کاهش فوتوسنتز جاری ناشی از کمبود نور و کمبود نشی را موجب کاهش تعادل دانه در بیول و وزن هزار دانه در افزایش تراکم گیاه ایجاد کرده‌اند (20 و 21). همچنین با توجه به وجود رابطه خطرین یا مشابه عملکرد دانه و شاخص سطح بیول که توسط ایرامای و میبلوون (22 و 23) گزارش شده می‌توان انتظار داشت که افزایش تراکم بیول به بالای بردن شاخص سطح بیول در جامعه گیاهان و افزایش نور در حالتی قادم به توانایی حاکمکرد دانه باشد. نتایج تأثیر متقابل سطوح مختلف آبیاری و تراکم بر عملکرد دانه در سطح بک درصد معنادار تشخیص داده شد (جدول 1). بیشترین عملکرد دانه به (D1) نسبت به (D4) 95/24 درصد میزان نسبت به آن در تراکم (E1) به دست آمد که از نظر آماری با میانگین (E1) تفاوت معناداری نداشت. کمترین عملکرد دانه نسبت به E1D4 نسبت به E1D3 99/84 درصد میزان نسبت به آن در تراکم (E1) به دست آمد که از نظر آماری با میانگین (E1) 0/23 درصد میزان نسبت به آن در تراکم (E1) نسبت به E1D3 درصد معناداری نداشت. لیانگ و همکاران (23) نیز گزارش کرده‌اند که افزایش تراکم، نسبت به آن در تراکم (E1) به دست آمد که از نظر آماری با میانگین (E1) 0/23 درصد میزان نسبت به آن در تراکم (E1) نسبت به E1D3 درصد معناداری نداشت.
نموده که حداکثر عامل در را در ذرت نیاپس تراکم زیادی، آبیاری

زیاد، مصرف زیاد کود و تأمین نیاس حفراتی بالا است.

تأثیر متغیر سطح مختلف نیتروژن و تراکم بر عامل در

که از ۱۴۰ کیلوگرم تراکم خاص در حفر و بالاخ بر تراکم

۹ بونه در مربع. کمترین عامل در دانه هم بی‌مانگنی

۷۸/۲ گر متروی به تیمار (کاربردی) ۱۴۰ کیلوگرم

نتروژن خاک و کاهش تراکم ۹ بونه در مربع) متعلق به

که بی‌مانگنی تیمار نداشت (جدول ۵). به طور کلی آثار

موفقیت عامل در دانه. در تراکم‌های

پایین به دلیل کاهش تعداد بالان در واحد سطح عامل در

که در افزایش تراکم به دلیل حجم‌های طرفیت هر گیاه

در استفاده از نیتروژن تا حد معینی مسئول بود، نیتروژن مادز

پایین سطح باقی ماند و از دسترس گیاه خارج گردید. با

افزایش تراکم، عامل در واحد سطح به دلیل افزایش

تعداد بالان در واحد سطح افزایش یافت و این در حالی بود که

از لحاظ سایر عوامل به ویژه عنصر غذایی تیتروژن، بی‌مانگنی

وجود نداشت. به همین دلیل به موازات افزایش تراکم بونه باید

نتروژن در دسترس افزایش یابد.

عملنداز عامل در دانه

عملنداز عامل در دانه که نشان دهنده ماده حمضی تجربه یافته در

اقدام هواپی در زمان برداشت است، تحت تأثیر کمبود آب

صرف نیتروژن و تراکم بونه قرار گرفت (جدول ۱). با افزایش

شدت تشخیصی کاهش خیلی معناداري در عملنداز عامل

که مشاهده شد (جدول ۲) نگاه اسپرون و همکاران

و سه‌پری و همکاران (۷) را تأیید می‌نماید. دلیل افزایش تولید

کل ماده انجام حاکی از افزایش تیمار آبیاری مطلوب. گستر

بیشتر و ت Dao به پهلو سطح بزرگ بود چه موجب ایجاد منبع

فیزیولوژیکی کافی جهت استفاده در جهت بررسی و
تأثیر سطح مختلف آبیاری، نیتروژن و تراکم بونه بر عملکرد اجایز

ماده خشک افزایش می‌یابد و لینی به دلیل ایجاد رقابت بین گیاهان از میزان شاخص برداشت کاسته می‌شود. آثار مقاومانی تجاری به شاخص برداشت معیار نیز نیاز دارد (جدول 1).

انتقال مجدد مواد فتوسنتزی
میزان انتقال مجدد ماده خشک به طور معنی‌داری تحت تأثیر تنش خشکی قرار گرفت (جدول 1). بیشترین انتقال با میزان‌گی لایه‌گذاری به شاخص برداشت معیار (164% در میزان انتقال این شیان ناشی از وجود ماده ذخیره‌ای باعث کاهش ایجاد شد. مقدار جدید این امر در انتقال مجدد ماده خشک نشان داد (جدول 2). راوسون و ایوانی (28) وایان داشنتد که کاراکتری به خصوص در انتقال مجدد خشک و تنش خشکی بروز مبتنی بر کاهش عضلانی قابل توجه می‌بادند (جدول 2). احتمالاً در گیاهان تحت تیمار آبیاری مطلوب و نشان خشکی شدید به ترتیب با وجود فتوسنتز جاری و نیتروژن حدودی یک درصد بود که از نظر آماری معنی‌دار تشخیص داده شد (جدول 1 و 2). نتایج به دست آمده نشان داد که در این پژوهش کاربرد نیتروژن تغییری در نحوه توزیع مواد فتوسنتزی به وجود نیاورد و عملکرد ماده خشک و دانه را به نسبت مشابه بازیابی داده است. گزارش‌های مشابه در آگاهی از عدم تأثیر سطح مختلف نیتروژن بر شاخص برداشت ارائه گردیده است. از سوی دیگر مواد فتوسنتزی تراکم از نظر شاخص برداشت می‌باشد (جدول 1). افزایش نتایج شاخص برداشت کاهش از کاراکتر توزیع مجدد مواد بی‌دلیل روابط فیزیولوژیک میان طرفیت میدان و پیچیده به ویژه تغییرات تولید میدان و انبساط در محدوده سطح بالای تراکم وجود داشت (جدول 2). افزایش تراکم از سو موجب افزایش میزان فتوسنتزی و از سوی دیگر محدودیت مقصدهای فیزیولوژیک، می‌شود که برآورد نیز عوامل سبب افزایش تخصیص مواد و انتقال این مواد به دانه گردد. گزارش‌های هاشمی درقالی و همکاران (21) و پهلوان و آذری (24) در مطالعه فوق را تأیید می‌نمایند. تأثیر سطوح مختلف نیتروژن و آثار مقاومی میان شاخص‌های مختلف به جز مرحله ابزاری و نیتروژن بر میزان انتقال مجدد معیاری

در زراعت ذرت توصیه تراکم‌های بالا نه نمایش مطلوبی می‌تواند فیزیکی باشد. همچنین تحقیقات‌های استرخت داد که روند تغییرات عملکرد ماده خشک تحت تأثیر تراکم بونه در کلیه سطوح کاربرد نیتروژن روی بکارگیری تفاوت‌هایی داشتند. در سطوح بالای مصرف نیتروژن بر خلاف پایین ترین مصرف مصرف این عصر، با افزایش تراکم کاهش وزن نک بونه‌ها جاری شد و در نتیجه آن عملکرد ماده خشک افزایش یافت (جدول 5).
کاراکتر انتقال مجدد مواد فتوسنتزی

با انفجار شدت نش خشک کردن و کاهش مصرف تیره‌ورزند کارایی انتقال مجدد مواد خشک به طور معنی‌داری انفراش نشان داد (جدول 2). این وضعیت باید آن است که تحت شرایط نشتن کمیاب آب و با تیره‌ورزند نسبت به کاهش متقابل شده‌باشد.

یک‌جانبه، در تحقیق درباره تیره‌ورزند نسبت به کاهش مواد فتوسنتزی در سطح ده به اندازه‌ای که می‌تواند باعث بهبود در اندازه‌ی کاهش مواد فتوسنتزی در سطح ده شود، این وضعیت به وجود می‌آید.

اثر مقاول سطحی تیره‌ورزند و تراکم برای هم انتقال مجدد در عملکرد دانی معنی‌دار بود (جدول 1). در گیاهان تحت نشتن تراکم، نفس زاید و ترسره‌ای نور موجب زردی سریع برگ‌ها، کاهش فتوسنتزی کاهش شاخص و اندکی پیش‌بینی بیشتر عملکرد دانی با مواد ذخیره شده دردس. بررسی میانگین آمار متقابل تیره‌ورزند و تراکم بسیار نشان داد که بر همکنش کاررده 120 کیلوگرم تیره‌ورزند خالص در هکتار (D10) و تراکم 18 کیلوگرم در متر مربع (D3) از طریق کاهش دوام سطح برگ و کاهش فتوسنتزی جاری موجب انفراش

سه‌م مواد ذخیره‌ای در تولید عملکرد دانی شد (جدول 5).

نتیجه‌گیری

در این آزمایش محتوای نسبی آب برگ بالا و بسیار معنادار میانگین جهت نشان داد و وضعیت آب در گیاه موردنظر بسیار گرمی قرار گرفت. با این تأثیر تیتانیوم نشان که کمبود آب که از طریق کنترل مقدار آب در خاک مورد نگهداری را بر رشد و نمو گیاه دردست دقت بالایی برسی نمود که این وضعیت نشان داد تأثیر نشتن

نود (جدول 1). در شرایط مطلق سطح بالاتر مصرف تیره‌ورزند به دلیل تولید برگ بیشتر تداوم بیشتر آن و همچنین بالا بودن مقدار فتوسنتزی جاری از میزان انتقال کمتری برخورد داده و بدین ترتیب سهم مواد ذخیره‌ای در تولید عملکرد دانی کاهش یافت ولی در شرایط نش و به ویژه نش نمای خشک، مصرف مقدار تیره‌ورزند با لحاظ تولید سطح برگ بیشتر و افزایش مواد ذخیره شده در ساله موجب انفراش میزان انتقال در مقایسه با

مقدار کمتر مصرف تیره‌ورزند کاهش (جدول 2).

قیمت‌های مصرف تیره‌ورزند کاهش و

کاهش مصرف تیره‌ورزند کاهش و
تأثیر سطوح مختلف آبیاری، تیترزن و تراکم بونه بر عملکرد اجزای...

کمبود آب قرار گرفت و کاهش معنایداری یافت. کمبود آب از یک سو بافت محروم و رطوبت نسبی و پاناس بپر بزرگ زندگی کاهش تقویت در وابسته به رگ فراوان آورده و از بین دیگر تأثیر یک سطح سطح بسیار، سطح عالی تنفسی را کاهش داد.

مدی تغییرات استفاده

4. پرستشی، م. (۱۳۷۸). برسی انقلاب مجددی ماه خشک و نیتروژن و تغییر شاخه‌های رشد ارقام بینه در تاریخ‌های مختلف کاشت. پایان نامه کارشناسی ارشد زراعت، دانشگاه کشاورزی، دانشگاه تهران.

5. ساکی، نژاد، م. (۱۳۷۸). مطالعه اثر تنش آب بر روند جذب عناصر از، فسفر، نیتروژن و سدیم در دوره‌های مختلف رشد، با توجه به خصوصیات مولکول‌ها گیاه در شرایط آب و هوایی اهواز. پایان نامه دکتری فیزیولوژی گیاهان زراعی، واحد علوم و تحقیقات اهواز.

6. سیحانی، ن. (۱۳۷۹). راهنمای تعيین شاخه سطح بیرک گیاهان زراعی. نشره ترویجی سازمان تحقیقات آموزش و تربیت کشاورزی، شیراز.

8. رفیعی، م. (۱۳۸۱). اثرات تنش کمبود آب، روزی و فسفر بر شاخه‌های زیست و عملکرد کمی و کیفی ذرت. پایان نامه دکتری فیزیولوژی گیاهان زراعی، واحد علوم و تحقیقات اهواز.

9. زمیار، غ. و. پژوهشی. (۱۳۷۳). اثر آب‌زدایی و تراکم کلیت بر توزین دیگر عملکرد ذرت دانهای. سومین کنگره زراعت و اصلاح نباتات ایران. دانشگاه تبریز.

13
34. Tetio - Kagho, F. and F. P. Gardner. 1988. Responses of maize to plant population density. II. Reproductive
30. Schnyder, H. 1993. The role of carbohydrate storage and redistribution in the source - sink relation of wheat and