ارزیابی تغییرهای فیزیکوشیمیایی و میکروبی رگ‌گوشه فرنگی فله در طی نگهداری در سردخانه

مهندس امیر حسین الهامی راد، دکتر فخری شهیدی

چکیده

در این پژوهش، ویژگی‌های فیزیکوشیمیایی و میکروبی رگ‌گوشه فرنگی فله در سردخانه به کار گرفت. در این تحقیق، با استفاده از روش‌های شناسایی کرده و با توجه به نتایج بدست آمده، برای اصلاح روش‌های مثبت ادامه نمود. نمونه‌ها را به فله مورد نظر پس از تولید و آماده‌سازی در 3 تیم مختلط پروری شدند. نمونه‌های موجود در 8 ماه و دماي سردخانه گذشته نسبت به سری‌های وسیع است. نمونه‌های موجود در 3 ماه شش زمان نگهداری III از دیدگاه به مدت میانگین افزایش تغییرهای کیفی محلول، جریمه بخار از نظر pH اسید لذتیک (نوع L) و D، مادر تحکیم، رنگ هوا، رنگ و شیمیایی کل را باکتری‌ها.

بررسی تغییرهای شمارش کلی باکتری‌ها، تعادل باکتری‌های مقاوم به اسید و شمارش میکروبیکسیمیایی کیفی به روش هوارد، در بیماری‌های اختلال‌های داده در این سیستم، زمان می‌تواند باشند در سطح و

تغییر در میوئی فلزی مایه‌گرایی باشد. فقط یک اثر محدودی که یک تغییر مستقیم در ایجاد یک تغییر داشته و تنها آن را به طور کامل تست کنیم.

ویژگی‌های میکروبیولوژیکی

رب فله نشان داد که در فصل زمستان به مدت 30 روز از دیدگاه به سختی نگهداری کامل باکتری‌ها، اندکی باکتری‌های مقاوم به اسید و مقدار I نماینده کارمند. مراحل کلی رابطه بین نوکولین است. با این که برای اصلیت آن شکلی که در نمک پاشی است، یک مراحل حساسی و محقق در مراحل، رابطه بین در تئوری مدت زمان نگهداری آن دارد.

واژه‌های کلیدی: رابطه، آلودگی‌های میکروبی، رگ‌گوشه فرنگی، ویژگی‌های فیزیکوشیمیایی

مقدمه

وضعیت خاص مانگگازی گوشه فرنگی و هم‌زمانی برداشت آن در یک منطقه، در باره این افراد میانگین گوشه فرنگی نبردی به کار خانه‌ای افتراق‌بافته و عمداً باید در این موارد جزوی به

در سال‌های اخیر، تولد رگ‌گوشه فرنگی فله در کشور، با به

dلایال مختلف افتراق‌بافته که خانه‌ای است. با توجه به

1. عضو هیئت علمی (مربی) علوم صنایع غذایی، دانشگاه آزاد اسلامی سیستان و
2. دانشیار علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد
باکتری‌های اسیدلاکتیک و باکتری‌های مقاوم به اسید قادر به فعالیت می‌باشند (17و 19). انواع دیگری از باکتری‌ها شمل (Corynebacterium), (Listeria) و (Kurta) و (Lactobacillus) می‌تواند (27) موجب فساد رب گوجه فرنگی شده و بر روی تولید آن اثر بگذارد.

از مهم‌ترین گونه‌های خمیر عامل فساد می‌توان به گونه‌های (Hansenula), (Candida) (Aureobasidium), (Trichosporon) (Torulopsis) و (Saccharomyces) اشاره نمود (11, 16, 20, 21, 27). مشخص شده است که مخمر ژیگواساکارامایس پایل " (Zygosaccharomyces bile) عامل فساد در رس گوجه فرنگی است (11). همزمان گونه‌های خمیر به دلیل مقاومت حارطی کمی که دارند، بهتر از فرآیند حارطی زده می‌مانند (1) باکتری‌های اسیدلاکتیک، دسته‌ای از میکروگاتیس‌ها هستند که فساد قابل توجهی را در مراحل مختلف فرآیند و آماده‌سازی و پخت گوجه فرنگی (رب) باعث شوند. این دسته از باکتری‌ها در ایجاد طعم و بوی مشابه با دوگره‌ها شرکت داشته و در سطح و داخل گوجه‌های که وارد کارخانه‌ها می‌شوند به خوبی به خوبی به نشده و یا آب گوجه‌که به مقدار جزئی تغییر شده است به خوبی رشد می‌کند (24). از میان باکتری‌های لاتکتوسپلس پلاتاریوم (Lactobacillus plantarum) باسگوست جرم را تولید نمی‌کند. به تعدادی واحدهای بنا به تولیدنده، میزان رابطه شده‌ای با یا برخی با الکتریک بالا به صورت فله بسته‌بندی نموده و در رس‌خوره، ابزار به وجود، یا در فضای آزاد قرار می‌دهند. این مقدار پس از آن که محدودیت گوجه فرنگی روند تولید می‌دهد و به ترتیب آنها وارد نمود. تولید رشید و پس از باریزاسی و تنظیم بریکسی، در قوطی بسته‌بندی کرده و باستوریزه شده، علاوه بر آن، بسیاری از کارخانه‌های تولیدنده، سبب گوجه فرنگی، چابک و انواع گونه‌های خمیرشناخته شده در زیر رشید از رس گوجه فرنگی به عنوان استفاده در فرآیند‌های خود، به‌طور مثال از رس گوجه فرنگی استفاده می‌کنند. در حال حاضر مقادیر زیادی از رس گوجه فرنگی، به کشاورزی آماده می‌شود. تمام گونه‌ها به دلیل عدم رعایت اصول صحیح فرنگی و نگهداری میان‌الدوله کیک و میکروبه مchodzą مافیک برای بالاست. بر اساس موانع استفاده برآورد شده فله کیک به عنوان جزئیات فطق خیال مورد استفاده قرار می‌دهند. هر چند که احتمال تولید گونه‌به به خوبی فطق خیال زیرین وجود دارد. به گونه‌بیانه در رس غیر بهداشتی تلقی گردیده و تخلیه محتوای حشره رز مقدار می‌شود. برای از صاحبان تولید کننده، به طریق غیر استیک اینه به لایه‌های سطحی بالابر می‌توانند رود گوجه فرنگی به مقدار بسته‌بندی، تولید نموده و رشد می‌کند (24). بررسی‌های انجام شده توسط برخی محققان نشان می‌دهد که اثر گرایش‌دار لاتکتوسپلس در پالستک گوجه فرنگی مقدار اسیدشینه، اسیدشینه، کل، آتانول است. استاتل، رهی و (D و L) کریموئیدی سبب این اثربخشی می‌گردد. به دلیل این و مقدار pH افزایش یافته و مقدار محلول به طور جزئی کاهش می‌یابد (15). در اثر رشد و فعالیت لاتکتوسپلس، مقدار ماده جامد
محیط‌های اسپورزای مقاوم به اسید مانند گونه‌های مختلف باکتری‌های اسپورزای مقاوم به اسید مانند گونه‌های مختلف گونه‌های مختلف پنی سیلیموم (Penicillium spp.) و گونه‌های کیکی رازیوس نیگریکس (Rhizopus nigricans) آنتی‌بیوتیک (Geotrichum candidum) فوزاریوم اکسیس پی‌روم (Botrytis cinerea) و بوتروسیمیس (Fusarium oxysporum) بستگی به نمک‌های مختلف گونه‌های جنس باسیلسوس در گروه فریزنی قادر به عفونت‌سازی اثر ندارند. (Bacillus coagulans) و باسیلسوس سویتیلس (Bacillus subtilis) (هر چند که گونه‌های دیگری نیز نظیر: باسیلسوس ماسرنس (Bacillus macerans)، باسیلسوس بلیک ماکسما (Bacillus polymyxa) و باسیلسوس سیکولاس (Bacillus circulans) از روب گونه فریزنی اپوروله (Bacillus circulans) شده‌اند (14 و 15). پژوهش‌های انجام شده نشان می‌دهد که باسیلسوس کوآگولاس می‌تواند از درآمدها گونه فریزنی رشد کرده و pH محیط‌های 1/5 یا 1/7 افزایش دهد (14 و 15). در برخی از میکروگانیسم‌ها که قادرند بر ریز گونه فریزنی و فنگوفیکی برخی از این اتیک‌ها نیز به‌طور کامل نتایج کیفی خصوصی‌تر و مصرف تعیین کننده است. از انجا که این گونه تاکنون رشد گروهی دیگری از میکروگانیسم‌ها گروهی دیگری از میکروگانیسم‌ها که قادرند بر ریز گونه فریزنی و فنگوفیکی برخی از این اتیک‌ها نیز به‌طور کامل نتایج کیفی خصوصی‌تر و مصرف تعیین کننده است. از انجا که این گونه تاکنون رشد گروهی دیگری از میکروگانیسم‌ها گروهی دیگری از میکروگانیسم‌ها که قادرند بر ریز گونه فریزنی و فنگوفیکی برخی از این اتیک‌ها نیز به‌طور کامل نتایج کیفی خصوصی‌تر و مصرف تعیین کننده است. از انجا که این گونه تاکنون رشد گروهی دیگری از میکروگانیسم‌ها گروهی دیگری از میکروگانیسم‌ها که قادرند بر ریز گونه فریزنی و فنگوفیکی برخی از این اتیک‌ها نیز به‌طور کامل نتایج کیفی خصوصی‌تر و مصرف تعیین کننده است. از انجا که این گونه تاکنون رشد گروهی دیگری از میکروگانیسم‌ها گروهی دیگری از میکروگانیسم‌ها که قادرند بر ریز گونه فریزنی و فنگوفیکی برخی از این اتیک‌ها نیز به‌طور کامل نتایج کیفی خصوصی‌تر و مصرف تعیین کننده است. از انجا که این گونه تاکنون رشد گروهی دیگری از میکروگانیسم‌ها گروهی دیگری از میکروگانیسم‌ها که قادرند بر ریز گونه فریزنی و فنگوفیکی برخی از این اتیک‌ها نیز به‌طور کامل نتایج کیفی خصوصی‌تر و مصرف تعیین کننده است. از انجا که این گونه تاکنون رشد
نموذج براشدي از نیماره‌های مورد بررسی در 6 تناوب زمانی مختلف انجام شد. که عبارت از بلافاصله پس از تولید، 48 ساعت پس از تولید، پس از 2، 4، 6 و 8 ماه بالاخره پس از 8 ماه نگهداری در سردخانه بودند. این توجه به ناحیه آمادگی ریب گوشه فرنگی فلک. که شامل اندازه خشک در سطح همیشگی و نیماره در سطح محلی می‌باشد. نتایج با توجه به فرآیند مشابه در ناحیه تولید شده مشابهی از نیماره، شبکه زیستی در صورتی که در فاصله حدود 10°C تا 37°C کاهش یافته. ضمن اینکه در اثر تغییر سطحی، لایه اصلی نیمارها خشک گردید. پس از آن، نیمارها در صورتی، در دمای 37°C (به میزان 130 کیلوگرمی) بر روی تیمی از نیماره‌های برابر 36 (12 نمونه) و 36 نمونه‌های برابر 38 (12 نمونه) انجام گردید. به‌دنبال تریبی تیمارهای اعمار شده عبارت از نیماره‌های برابر 36، نیماره‌های برابر 38 بدون نیماره، نیماره‌های برابر 38 و نیماره‌های برابر 38ی تعداد کل نیماره‌های تولید شده عبارت بودند از: عدم نیماره‌پاشی در سطح برابر 6 تناوب زمانی اسپریزریالوس فلاوروس (Aspergillus flavus)

مواد و روش‌ها
نیماره‌های رب مورد نیاز، پس از تولید در یکی از کارخانه‌های صنایع غذایی، داخل بسته‌بندی پایلاستیکی 130 کیلوگرمی با ارتقاء تقیبی 1 متر، به پوشش درونی دوباره از جنس پلی اتبی، پر شدند. با توجه به تیمارها، فاکتورهای مورد بررسی عبارت از براشک بین سطح 36 و 38. دو حالت نیماره‌پاشی و عدم نیماره‌پاشی در محدوده مستحکم و 6 تناوب زمانی مختلف در یک دوره بهترین 8 ماه بهبود. نیماره‌های تولید شده مطلوب با روش معول در صفحات لوازم، به دست 48 ساعت در دمای محیطی (فضای آزاد) و در مسیر قرار داده شدند. در طی این مدت دما نیماره‌ها تا حدود 0°C تا 37°C کاهش یافته. ضمن اینکه در اثر تغییر سطحی، لایه اصلی نیماره‌ها خشک گردید. پس از آن، نیماره‌های برابر 36 (12 نمونه) و 36 نمونه‌های برابر 38 (12 نمونه) انجام گردید. به‌دنبال تریبی تیمارهای اعمار شده عبارت از نیماره‌های برابر 36، نیماره‌های برابر 38 بدون نیماره، نیماره‌های برابر 38 و نیماره‌های برابر 38ی تعداد کل نیماره‌های تولید شده عبارت بودند از:

۱۲ = ناحیه نیماره‌پاشی در × ۲ = نکاتر × ۴ = تیمار

بارختی مورد بررسی عبارت بودند از: اسپریزریالوس فلاوروس (Aspergillus flavus)
نتایج و بحث

بررسی نتایج حاصل از آزمون‌های میکروپاراسیت‌های نشان داد که تعداد کل باکتری‌ها در تمامی تیمارها به طور قابل توجهی افزایش یافته است. شبیب منحنی تغییر در شمارش کلی باکتری‌ها، در دو ناحیه، یکی در 48 ساعت اولیه پس از تولید و دیگری در ماهه‌های بعدی نگهداری تئودر بوته است (شکل 1). بررسی اثر میزان بیریکس و نمک بر تعداد کلی باکتری‌ها نشان می‌دهد که میزان بیریکس (بر مبنای بر میزان بیریکس 37 و 38 تا) تأثیری بر تعداد کلی باکتری‌ها نداشته و افزودن نمک در محدوده اطمینان 99% اثر معنادار داشته است (p<0.05).

اگر زمانی که بیریکس و نمک به معنای دو فاکتور محدودکننده اعمال گردد، تأثیر قابل توجهی بر سطح نهایی تعداد کل باکتری‌ها در محصول دارد. به طوری که سطح نهایی تعداد کل باکتری‌ها در معیار عدم بیریکس و نمک به طور معنادار کمتر از سایر معیارهای بازه 28 با نمک به میزان رشد میکروبی در هم‌ساز با نمک باس، بیش از این است که کاهش نمک در معیار داری باعث افزایش رشد میکروبی در

نمک، کاهش معناداری داشته است (p<0.01).

شکل 1. تغییرات شمارش کلی باکتری‌ها در طی زمان نمک در میکروپاراسیت‌های محدودتر گردید (15).

تغییر باکتری‌های مقاوم به نمک در طی زمان در تمامی تیمارها در محدوده اطمینان 99% معنادار بوده است (ب<0.01). به طوری که تعداد آنها در 48 ساعت اولیه پس از تولید و همچنین در 24 ساعت اولیه سردخانه گذاری، افزایش قابل توجهی داشته و به تدریج سیر صعودی در تمامی تیمارها کندتر شده و در نهایت روند کاهشی داشته است. روند کاهشی جمعیت باکتری‌های مقاوم به نمک، در تیمارهای دارای نمک به طور معنی‌داری شدت یافته است از سایر تیمارها بوده است (p<0.01). به طوری که سطح نهایی این میکروپاراسیت‌ها در تیمارهای حاوی نمک بایسیوس از سطح اولیه (زمان صفر) قرار گرفته است (شکل 2). در اواخر دوره سردخانه گذاری، لایه شکل سطحی رضو در نمونه‌های با نمک، از انتشار نمک به قسمت‌های پایین‌تر جلوگیری می‌کند. به همین علت روند آینده‌ای باکتری‌های مقاوم به نمک در تمامی تیمارها تقریباً یکسان بوده است. بنابراین با گذشت زمان و انتشار نمک در لایه‌های تحتانی، اثر بازدارنده‌ای آن مشخص تر گردید. به توجهی روند تغییر در ماهه‌ای بعدی کندتر شده و سیر نزولی نشان می‌دهد. روند تغییر تعداد باکتری‌های مقاوم به نمک، از حدود ماه چهارم به بعد به خصوص در تیمارهای با نمک، کاهش معناداری داشته است (p<0.01).
از ریاضی تغییر اسیدهای در طی زمان، نشان می‌دهد که میزان اسیدهای کل، به‌طور معنی‌داری کاهش یافته است (\(10^{-6}\)). طی مدت زمان خودروهای مختلف شناسی می‌دهد که روند کاهش اسیدهای در طی زمان در تمامی تیمارها از یک اگربی خش، با ضریب همبستگی بین 0.95/ یک می‌کند. مقایسه شیب خطوط شناسی که شدت کاهش اسیدهای در تمامی تیمارها تقریباً مشابه بوده است (شکل 4). اسید غالب در رباب گوجه فرنگی، اسید سیریک است که نقش اصلی در اسیدهای رب ایفا می‌کند. هر چند که برخی گزارش‌های می‌تواند وجود اسید مالیک در مقادیر بیشتر از اسید سیریک وجود دارد (24).

میزان pH و اسیدهای در طی زمان مشخص شده که اغلب سیر نژولی اسیدهای در تمامی تیمارهای مورد بررسی میزان pH فقط در نمونه‌های فاقد نمک افزایش یافته است. تفاوت در pH نمونه‌های با نمک و بدون نمک در مقدرات اطمینان 95 معنی‌دار بوده است (\(P \leq 0.01\)). علت این مسئله به تأخیر نمک روند محیط، مربوط می‌باشد در اثر واکنش اسید سیریک موجود در محیط با کلرور سدیم، سیترات سدیم توپیدی می‌شود که سبب افزایش قدرت باریک محیط خواهد شد. در نتیجه علی رغم تغییر اسیدهای در جهت صعودی pH، محیط ناپایدار می‌ماند (شکل 5). بررسی منابع علی‌رغم وجود نشان می‌دهد که روند کاهش میزان اسیدهای در طی زمان، ناشی از واکنش‌های تخریبی است.

به نظر می‌رسد که وجود نمک به همراه تغییرات طلایی در دمای 0°C در باکتری‌های مقاوم به اسید اثر کشاندن داشته است. تأثیر کشتگی ناشی از دمای سرد، در نمونه‌های بدون نمک، کاهش داشته است.

بررسی روند تغییر عدد هوارد در طی زمان، نشان می‌دهد که عدد هوارد در هر 4 تیمار روند صعودی داشته است. این تغییر در محیط‌های فاقد نمک به‌طور قابل توجهی بیشتر از تیمارهای با نمک بوده است. به‌طوری که سطح نهایی هوارد در نمونه‌های فاقد نمک، در محیط‌های اطمینان 99 تفاوت معنی‌داری با نمونه‌های با نمک داشته است (شکل 3). بر اساس استاندارد ایران حداکثر عدد هوارد مجاز در رب گوجه فرنگی در مس باشد (20). این در حالی است که میانگین عدد هوارد در تمامی تیمارها از حد مجاز افزایش یافته است. روند افزایش عدد هوارد در نمونه‌های با نمک، نشانگر این مطلب است که هر چند نمک تأثیر قابل توجهی بر رشد سطحی قارچ‌ها داشته و توانایی گونه‌های کیکی را در ایجاد گرگره مهار نموده است، ولی رشد قارچ‌ها به طور کامل و خیفی وجود داشته است که اثر گرم دیگر نمک کارپنی است. این فاقد افرادی رشد‌های قارچی، با ارزیابی عدد هوارد همراه می‌باشد از طرف دیگر، با گذشته زمان در طی دوره تهیه‌داری نمک سطحی جذب لایه‌های پاپیل می‌شود و با مهار کردن مولکول‌های آب به لایه‌های بالاتر در اثر نشان‌گر محیط برای رشد کیک‌ها مساعد می‌گردد.
میکروبی ماده غذایی است (24). بر اساس نتایج حاصل در این پژوهش، مقدار اسید لاکتیک کل در نمونه‌های فاقد نمک، پس از دو هفته نگهداری به بالاتر از سطح مذکور نسبت به است، ولی پس از آن مقدار تغییر ناجی بوده است. احتمالاً عامل محدود شدن روند صعودی میزان اسید لاکتیک، نگهداری طولانی مدت در دماهای سرد بوده که بر فعالیت عوامل میکروبی مولد است، لاکتیک اثر بیافزارندان داشته است. در مورد نمونه‌های با نمک، میزان کل اسید لاکتیک، حتی در انتهای دوره سردخانه‌گذاری پایین‌تر از سطح مذکور بوده است.

میزان تغییر ماده خشک کل در طی زمان، در تمامی تیمارها معنی‌دار بوده است (0.01 ≤ P). با وجود عمل نمک پایین در سطح که سبب افزایش درصد ماده خشک در نمونه‌های با نمک می‌شود، از نتایج زمانی ۲ به بعد میزان ماده خشک کل در سطح این نمونه‌ها بهطور قابل توجهی کاهش یافته، در این زمان، تغییر فشار اسفر تاثیرگذار در لایه‌های سطحی ری، به علت غلظت بالایی نمک در قسمت‌های فوق‌العاده، طبیعت خود این آب موجود در نفیس محتوای در اثر افزایش نسبت به خشک‌سازی نمک کمتر از نمک نیز از نتایج زمانی ۱ به بعد کاهش قابل توجهی نشان داده است، در این دو نمونه‌ها به اندازه‌ای که طی آن فاز

بررسی تغییر میزان اسید لاکتیک (L+D) در تیمارهای (L+D) برای ۳۶ نمک و بکریک ۳۶ نمک نشان داد که مقدار کل اسید لاکتیک در ۴۸ ساعت اولیه پس از تولید و همچنین در دو ماهه اولیه سیزرخانه و مصرف افزایش معنی‌دار داشته است (0.01 ≤ P). میزان در ادامه دوره سرخانه‌گذاری میزان تغییر در هر دو تیمار جزئی بوده است اخذاً غلظت اسید لاکتیک در نمونه‌های با نمک و فاقد نمک نیز معنی‌دار می‌باشد. طبیعت خود که اندازه‌ای که نمک کل اسید لاکتیک در نمونه‌های فاقد نمک بوده است (0.01 ≤ P). بنابراین می‌توان نتیجه گرفت که نمک به اثر محدود کننده در روز مناسب تغییر اسید لاکتیک داشته است (شکل ۷). بر اساس نظریه پورتینا (Porretta ۱۹۹۳) اگر مقدار اسید لاکتیک کل بیشتر از ۳۰ گرم در کیلوگرم باشد نشان دهنده آلودگی

شکل ۵. روند تغییر pH در طی زمان (درگرسیون خطی: y=ax+bx)
آیی محصول از فاز جامد جدا می‌شود. عامل دیگری که احتمالاً در کاهش میزان ماده خشک (به‌خصوص در خمیرهای سطحی) مؤثر است کیک‌زدگی شیدید در نمونه‌های فاقد نمک است که در اثر متغیری بیانی و موانع فیزیکی در آمادگی، ماده خشک کل کاهش می‌یابد. به علت عدم استفاده از استاندارد نظریه‌باز بر جذب خشکی‌برداری بسیار کاهش میزان ماده خشک عنبیان (شکل ۷)، در هر حال کاهش میزان ماده خشک در لایه‌های سطحی، در اثر پدیده اسیر و یا سیربرس، بای 포함‌شدن ماده خشک کل در لایه‌های تحتاً همراه است.

نتیجه‌گیری

بررسی تغییر شمارش کلی باکتری‌ها و تعداد باکتری‌های مقاوم به اسید و شمارش میکروبیکی کیک‌ها به روش هوارد در تیمار عامل آب در این پژوهش، نشان می‌دهد که استفاده از بایوکس با (۵/۶۲) در تولید ره همراه با عمل نمک‌پذیری در سطح و نگهداری در دمای صفر درجه سانتی‌گراد، فقط یک اثر محدود کننده بر روند تغییرات میکروبی داشته و نتوانسته آن را به طور کامل متعاقب‌سازد، ولی در هر صورت بر رشد سطحی میکروبی تأثیر قابل توجه داشته است.

بررسی آماری نتایج نشان داد که تفاوت بایوکس در سطح‌های با این ۳/۷ استفاده در سطحی که در این پژوهش استفاده شده است. بر روند تغییر pH عدد هوارد، شمارش کلی باکتری‌ها، تعداد

شکل ۷ روند تغییر ماده خشک کل در طی زمان

شکل ۸ روند تغییر اسید لاکتیک (L,D) در طی زمان
که به نظر می‌رسد تاثیر عمده‌ای بر کیفیت محصول تولیدی و
مدت زمان مناسب‌گرایی آن دارد. روش‌های سردسازی و خشک
کردن سطحی روب فلز در شرایط دما‌های محيطی و
در مجاورت فضای آزاد، مشکلات ویژه‌ای به همراه دارد که

عبارت‌اند از:

1. سردر شدن به کنترل صورت می‌گردد به طوری که در شرایط
آب و هوایی استان خراسان و در فصل تابستان (رطوبت
نسبی پایین و دمای حدود 30°C) به مدتهاً در
حدود 48 ساعت طول می‌کشد تا دمای رب به حدود
37°C برود. ضمن این که لایه سطحی ان تیز خشک شود.

2. بسیاری از آلودگی‌های محیطی مناسبان در نتیجه، گرد و غبار و
همچنین اسپرورهای قارچی از طریق هوا به سطح محصول
وارد شود.

3. سردر شدن تدریجی علاوه بر تأثیری که بر پارامترهای کیفی
محصول مانند ویژگی‌ها، رنگ و مواد مغذی دارد، احتمالاً در
فعال شدن گونه‌های اسپوری به توان مهور بالا می‌رسد.

4. درمناطق شمالی کشور، بالا محدود تر رطوبت نسبی محیط و
احتمال بارندگی فصلی، خشک کردن سطحی محصول را در
دلما når فضای آزاد با مشکل مواجه می‌سازد. بنابراین
نزای با مسئولیت است که به طور عمومی در کلیه گونه‌های
کشور قابل استفاده باشد.

با توجه به شرایط ویژه مورد نیاز برای تهیه‌کننده، نیاز
به خشک کردن سطحی لازم به پیشنهاد در شرایط دما ملی و
فضای آزاد، استفاده از یک روش اصولی، ضروری به نظر
می‌رسد. که البته بررسی‌ها یزدی‌های بیشتری را می‌طلبد. در
اینجا به عنوان یک روش‌کار، پیشنهاد می‌شود که برای انجام
عملیات خشک کردن سطحی و سرد کردن مقدامی، می‌توان یا
طراحی و تجمیع اضافاتی جهت Rahul مجهز به فن و لامپ‌های
بنفش، با دمیدن جریان‌ها بر سطح محصول، زمان مورد نیاز را

سیاسی‌گرای

بنیاد ویلیام از زحماتی به دریای خانم مهندس نوبنده، خانم
مهاجر فلسفی در مؤسسه استاندارد و تحقیقات صنعتی
خراسان، که نقش ویژه‌ای در انجام مراحل مختلف طرح داشتند
نتیجه و قدرتمندی می‌شود.

179
منابع مورد استفاده

1. آرامسته، ن. 1371. شناسایی باکتری‌های اسپوروزا در روب‌گوجه فرنگی، یابای نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه فردوسی مشهد.
2. آل مهدی، م. 1365. میکروب‌شناسی عمیلی، مرکز نشر دانشگاهی، تهران.
3. پروانه، و. 1371. کتاب کیفیت آزمایش‌های شیمیایی مواد غذایی انتشارات دانشگاه تهران.
4. حسینی، ز. 1373. روش‌های متداول در تجربی مواد غذایی انتشارات دانشگاه شیراز.
5. خسروشاهی اصل، ا. 1376. شیمی تجزیه مواد غذایی انتشارات دانشگاه ارومیه.
6. راهنمای میکروب‌شناسی عمیلی. 1371. انتشارات مرک.
7. روح‌بخش، ع. 1379. کتاب بهداشتی مواد غذایی انتشارات شرکت سهامی چهر، تهران.
8. کریمی، گ. 1371. آزمون‌های میکروبی مواد غذایی انتشارات دانشگاه تهران.
9. لامع، ح. و احسانی. 1375. مبانی ماکروپژی و میکروب‌شناسی عمیلی. مرکز انتشارات علمی دانشگاه آزاد اسلامی، تهران.
10. مرتضوی، ع. 1371. الگوس میکروبیولوژی مواد غذایی. انتشارات گلشن، مشهد.
11. مرتضوی، ع. 1376. میکروبیولوژی مواد غذایی مدرن. نشر مشهد.
12. مرتضوی، ع. و فاطمه‌خانی. 1375. تکنیک‌های کاری انتشارات دانشگاه فردوسی مشهد.
13. موسسه استاندارد و تحقیقات صنعتی ایران. 1372. روش کاری از سه کتاب ششم، شماره ۷۶۷.