Volume 27, Issue 1 (Spring 2023)                   jwss 2023, 27(1): 261-273 | Back to browse issues page

XML Persian Abstract Print

university of Shahre Kord , dehghanian71@gmail.com
Abstract:   (1210 Views)
In sustainable agriculture, cow manure is used for greater productivity, a rich source of E-Coli pathogenic bacteria. The objective of this research was to investigate the simultaneous effect of the fractionation size of cattle manure and irrigation water salinity on the retention of E-Coli bacteria in the depths of the sand column with a height of 10 cm under saturated flow. Four different particle fractions of cow manure (1-2, 0.5-1, 0.25-0.5, and smaller than 0.25 mm) were added to the surface of the sand column at the scale of 30 tons per hectare, then leaching was done with different salinities (0, 0.5, 2.5, 5, and 10 dS/m) up to 10 pore volumes, then samples were taken from the depths of 0, 3, 6, and 12 cm. The number of bacteria in each sample was determined by the live counting method. The results showed that the effect of all sources of change and their interaction effects on the retention of bacteria in the soil is significant at the level of 5%. Salinity had a negative effect on the retention of bacteria, and the highest and lowest values of the relative concentration of bacteria (the result of dividing the number of bacteria in each soil depth by the initial number of bacteria in the desired manure treatment) were in 0 dS/m and 10 dS/m salinity of leaching water, respectively. By decreasing the size of cow manure particles due to the increase in hydrophobicity and blocking of preferential pores, the retention of bacteria decreased in all investigated soil depths. The highest and lowest retention of bacteria in the soil were investigated in the largest cow manure particle size (1-2 mm) and the smallest cow manure particle size (less than 0.25 mm), respectively. In addition, the highest relative concentration of bacteria in the soil was seen in the depth of 0-3 cm, and no significant difference was seen in other soil depths.
Full-Text [PDF 485 kb]   (540 Downloads)    
Type of Study: Research | Subject: Ggeneral
Received: 2022/06/16 | Accepted: 2022/12/7 | Published: 2023/05/31

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.