Volume 25, Issue 1 (Spring 2021)                   jwss 2021, 25(1): 75-89 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yarmohammadi E, Shabanlou S, Rajabi A. Optimization of ANFIS Model using Genetic Algorithm for Estimation of Scour Depth around Bridge Abutments. jwss 2021; 25 (1) :75-89
URL: http://jstnar.iut.ac.ir/article-1-3938-en.html
1. Department of Water Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran. , saeid.shabanlou@gmail.com
Abstract:   (2809 Views)
Optimization of artificial intelligence (AI) models is a significant issue because it enhances the performance and flexibility of the numerical models. In this study, scour depth around bridge abutments with different shapes was estimated by means of ANFIS and ANFIS-Genetic Algorithm. In other words, the membership functions of the ANFIS model were optimized using the genetic algorithm, finding that the performance of ANFIS model was increased. Firstly, effective input parameters on the scour depth around bridge abutments were defined. Then, by using the input parameters, eleven ANFIS and ANFIS-GA models were produced. Next, the superior ANFIS and ANFIS-GA models were introduced by analyzing the numerical results. For example, the correlation coefficient and scatter index for ANFIS model were calculated to be 0.979 and 0.070; for ANFIS-GA, these were 0.986 and 0.056, respectively. In addition, the average discrepancy ratio (DRave) for ANFIS and ANFIS-GA models was 0.984 and 0.988, respectively. Also, it was shown that the ANFIS-GA models had more accuracy, as compared to the ANFIS models. Moreover, a sensitivity analysis showed that Froude number (Fr) and ratio of flow depth to radius of scour hole (h/L) were the most influential input parameters for simulating the scour depth around bridge abutments.
Full-Text [PDF 1035 kb]   (1105 Downloads)    
Type of Study: Research | Subject: Ggeneral
Received: 2019/09/22 | Accepted: 2020/08/5 | Published: 2021/05/31

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb