Volume 24, Issue 2 (Summer 2020)                   jwss 2020, 24(2): 121-105 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Javaheri Tehrani M, Mousavi S F, Abedi Koupai J, Karami H. Optimization of the Mixing Scheme of the Porous Concrete to Reduce Urban Runoff. jwss 2020; 24 (2) :121-105
URL: http://jstnar.iut.ac.ir/article-1-3866-en.html
1. Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University, Semnan, Iran. , fmousavi@semnan.ac.ir
Abstract:   (3830 Views)
In the last few decades, the use of porous concrete to cover the sidewalks and pavements as an interface to collect the urban runoff has been increased. This system is economically more efficient than other runoff-pollution reduction methods. To design a runoff control system and reduce its pollution, it is necessary to determine the hydraulic and dynamic properties of the porous concrete (with and without additives). In this research, the effects of cement type (2 and 5), water to cement ratio (0.35, 0.45 and 0.55), fine grains percent (0, 10 and 20%), the type of additive (pumice, industrial pumice, perlite and zeolite), and the added additive percent (5, 10, 15 and 20%) on the physical properties of the porous concrete (porosity, hydraulic conductivity and compressive strength), each with three replications,  were  investigated using robust design. Qualitek-4 software was also used to discuss the results. The results showed that to obtain the highest porosity in the mixing scheme of the porous concrete, no fine grains, cement type 2 and 15% industrial pumice should be used, and water to cement ratio should be 0.35. Also, the water to cement ratio of 0.55, 0% fine grains, type 2 cement and 15% industrial pumice resulted in the highest value of hydraulic conductivity in the porous concrete. Finally, the water to cement ratio of 0.55, 20% fine grains, type 2 cement and 5% zeolite led to the maximum compressive strength. In general, it was not possible to reach a logical conclusion in this research with the least costs without employing the robust design.
Full-Text [PDF 557 kb]   (1520 Downloads)    
Type of Study: Research | Subject: Ggeneral
Received: 2019/04/11 | Accepted: 2019/09/30 | Published: 2020/07/31

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb