Volume 23, Issue 4 (Special Issue of Flood and Soil Erosion, Winter 2019)                   jwss 2019, 23(4): 45-57 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghobadi Alamdari S, Asghari Moghaddam A, Shahsavari A. The Feasibility of the Conjunctive Use of Surface and Groundwater Resources in Dehloran Plain by Using the MODFLOW Model. jwss 2019; 23 (4) :45-57
URL: http://jstnar.iut.ac.ir/article-1-3623-en.html
1. Department of Earth Science, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran. , sholeh.ghobadi@yahoo.com
Abstract:   (4968 Views)
Lack of the proper conjunctive use of surface and groundwater resources causes large water stresses in one of these resources. Conjunctive use of surface and groundwater, especially in arid and semi-arid regions, is a scientific and practical solution for sustainable water resources management. The aim of this research was to prepare some mathematical modeling to apply the conjunctive use of surface and groundwater in the Dehloran plain aquifer. In this study, the mathematical model of the Dehloran plain aquifer was developed using GMS 9.1 and the river data were entered. For the steady state condition, the time series data in the average year 2010-2011 were utilized. In the next step, the time series data from October, 2010, to September, 2011, were used for the unsteady state analysis. In the unsteady state, four stress periods were taken; then the model calibration was carried out in three steps for each stress period; after the optimization of the hydrogeological parameters of the model, its verification was done for the period of 2011-2012 period. After the calibration of the model in the unsteady state, the values of the mean error (ME), the mean absolute error (MAE) and the root mean squared (RMS) errors measured in piezometers were obtained to be -0.24, 0.46 and 0.65, respectively. The results of verification confirmed the ability of the model in simulating the natural conditions of the aquifer. Finally, applying different scenarios to the model showed that the proper conjunctive use of surface and groundwater could increase the volume of water at a rate of 2.23 million cubic meters per year.
Full-Text [PDF 2189 kb]   (1725 Downloads)    
Type of Study: Research | Subject: Ggeneral
Received: 2017/12/5 | Accepted: 2018/06/25 | Published: 2019/12/31

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb