جلد 18، شماره 68 - ( مجله علوم و فنون كشاورزي و منابع طبيعي-علوم آب و خاك-تابستان- 1393 )                   جلد 18 شماره 68 صفحات 88-79 | برگشت به فهرست نسخه ها

XML English Abstract Print


دانشگاه علوم کشاورزی و منابع طبیعی ساری ، srazavizade@gmail.com
چکیده:   (13860 مشاهده)

  پیش­بینی میزان بار رسوب منتقل شده توسط رودخانه­ها، یکی از جنبه­های مهم مدیریت رودخانه­ها، مخازن سدها و به‌طور کلی پروژه­های آبی به‌شمار می­رود. در تحقیق حاضر به‌منظور پیش­بینی بار معلق رسوب رودخانه طالقان با استفاده از شبکه عصبی مصنوعی و شناسایی شبکه بهینه با بالاترین دقت، از 500 داده روزانه متغیرهای دبی روز مورد‌نظر، دبی یک روز قبل، اشل و وضعیت هیدروگراف (به‌ترتیب با میانگین ( m3/s ) 83/13، ( m3/s ) 42/15، ( cm )83/89 و036/0-) به‌عنوان ورودی مدل و 500 داده روزانه بار معلق رسوب متناظر، به‌عنوان خروجی مدل استفاده شد. داده­های مورد استفاده مربوط به بازه زمانی 1384- 1363، می­باشد. با ایجاد ترکیب­های متفاوتی از متغیرهای ورودی و هم‌چنین با تغییر تعداد نرون­های لایه پنهان و تابع آستانه، 80 شبکه عصبی متفاوت ایجاد شد، که با مقایسه دو پارامتر R2 و RMSE در مدل­های مختلف، دقت آنها بررسی شد. نتایج نشان داد که شبکه عصبی با ساختار 1-9-3 و با ترکیب پارامتر­های ورودی شامل دبی روز مورد‌نظر، دبی یک روز قبل و اشل، با R2 و RMSE آزمون، به‌ترتیب97/0 و 068/0 دارای بالاترین دقت می­باشد. بر‌اساس نتایج حاصل از شبکه 1-9-3، میانگین داده­های رسوب مشاهداتی و پیش‌بینی شده توسط مدل بهینه (مربوط به بخش آزمون)، به‌ترتیب802/1122 و 924/ 1184 (تن در روز) می­باشد.

متن کامل [PDF 210 kb]   (4052 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: عمومی
دریافت: 1393/6/24 | پذیرش: 1393/6/24 | انتشار: 1393/6/24

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.