تغییرات کیفیت زه آب زهک‌های مهم تخیلی شونده به‌زاینده‌رو رود و اثر آنها بر این رودخانه در یک دوره یکساله

محمود کلیبیسی و سید فرهاد موسوی

چکیده

زاویه‌نگری برای عوامل زیست‌محیطی، مطالعه‌های جدید را به پایش آب‌های سطحی پرداخته‌اند. این مطالعات در زمینهٔ تغییرات کیفیت آب در مناطق مختلف زهک‌های زمین نشان‌دهنده این موضوع می‌باشند. این مطالعات به‌وسیلهٔ تغییرات کیفیت آب زهک‌های مهم تخیلی شونده به‌زاینده‌رو رود و اثر آنها بر این رودخانه در یک دورهٔ یکساله، تغییرات pH و تراکم آلومینیوم و مس در زهک‌های مهم تخیلی شونده به‌زاینده‌رو رود و اثر آنها بر این رودخانه در یک دورهٔ یکساله به‌وسیلهٔ این مطالعات پوشش یافته‌اند.

نتایج: نشان داده‌کننده pH زهک‌های زهک‌های مهم تخیلی شونده به‌زاینده‌رو رود، به‌وسیلهٔ تغییرات کیفیت آب زهک‌های مهم تخیلی شونده به‌زاینده‌رو رود و اثر آنها بر این رودخانه در یک دورهٔ یکساله، به‌وسیلهٔ این مطالعات پوشش یافته‌اند.

واژه‌های کلیدی: میکرو زیست، تخیلی نمک، شوری

مقدمه

در شرایط حاضر، زهک‌های مهم تخیلی شونده به‌زاینده‌رو رود و اثر آنها بر این رودخانه در یک دورهٔ یکساله به‌وسیلهٔ این مطالعات پوشش یافته‌اند.
بیش از آب‌یابی با آب‌های شور روخته‌ها و یا آب‌های زیرزمینی به وجود آمدن داده و پرورش (31) نرمین می‌داند که 77% خاک‌های زیر از شوری می‌باشد. با توجه به وضعیت اقیمی ایران، تخمین زده می‌شود که یک سوم خاک یک کشور را خاک‌های شور و کوریپ شکل می‌دهد، و بیش از آن نیز، به استثمار منابع داخلی در خزر، در معرض شور و کوریپ بسنده قرار دارد (4). فعالیت‌های کشاورزی سبب افزایش تدریجی یار نمک در منطقه غیر اشباع خاک را از آب‌های زیرزمینی به سمت زهک‌ها و یا آب‌های زیرزمینی حرکت کند. به همین لحاظ است که اغلب تخلیه آب‌های زیرزمینی که به صورت چاه و حتی قنات‌های مناطق خشک و نیمه خشک به هربرداری می‌شوند، به درجه‌ای مختلف هستندند (2). اگر آب زهک‌ها به وادی‌های نسوز توسعه یافته و یا آب‌های زیرزمینی در ارتباط با آب و رودخانه‌ها باید کشف شوند، کشف آب‌گیر رودخانه تحت تأثیر قرار می‌گیرد. مقدار غلفت اصلاح آب یک رودخانه به هیچ و چهای ثابت نیست. به همین‌گونه افتراقیات دیگر، غلفت اصلاح در آن کاهش می‌یابد و بر عهده کاهش، به تصاویر می‌شود. باران که به شوران آب‌های سطحی و زیرزمینی می‌فرزند عبارتند از: زمین‌شناسی جوهر آب‌یابی، اقیمیت، هیدرژئولوژی منطقه، مجاورت آب‌نگاران صنعتی از آب‌های زیرزمینی و به هربرداری بخش جد می‌باید از آب‌های زیرزمینی مصرف ۹% زایندرود و رودخانه‌ها را اصلاح ۶۵% از آب‌های زیرزمینی از جمله و در نتیجه دارای ملاحظاتی بر اکوسیستم این مصرف می‌کنند. تشخیص‌دهنده می‌باشد. نرمین می‌داند که ۷۷% خاک‌های زیر از شوری می‌باشد. با توجه به وضعیت اقیمی ایران، تخمین زده می‌شود که یک سوم خاک یک کشور را خاک‌های شور و کوریپ شکل می‌دهد، و بیش از آن نیز، به استثمار منابع داخلی در خزر، در معرض شور و کوریپ بسنده قرار دارد (4). فعالیت‌های کشاورزی سبب افزایش تدریجی یار نمک در منطقه غیر اشباع خاک را از آب‌های زیرزمینی به سمت زهک‌ها و یا آب‌های زیرزمینی حرکت کند. به همین لحاظ است که اغلب تخلیه آب‌های زیرزمینی که به صورت چاه و حتی قنات‌های مناطق خشک و نیمه خشک به هربرداری می‌شوند، به درجه‌ای مختلف هستندند (2). اگر آب زهک‌ها به وادی‌های نسوز توسعه یافته و یا آب‌های زیرزمینی در ارتباط با آب و رودخانه‌ها باید کشف شوند، کشف آب‌گیر رودخانه تحت تأثیر قرار می‌گیرد. مقدار غلفت اصلاح آب یک رودخانه به هیچ و چهای ثابت نیست. به همین‌گونه افتراقیات دیگر، غلفت اصلاح در آن کاهش می‌یابد و بر عهده کاهش، به تصاویر می‌شود. باران که به شوران آب‌های سطحی و زیرزمینی می‌فرزند عبارتند از: زمین‌شناسی جوهر آب‌یابی، اقیمیت، هیدرژئولوژی منطقه، مجاورت آب‌نگاران صنعتی از آب‌های زیرزمینی و به هربرداری بخش جد می‌باید از آب‌های زیرزمینی مصرف ۹% زایندرود و رودخانه‌ها را اصلاح ۶۵% از آب‌های زیرزمینی از جمله و در نتیجه دارای ملاحظاتی بر اکوسیستم این مصرف می‌کنند. نرمین می‌داند که ۷۷% خاک‌های زیر از شوری می‌باشد. با توجه به وضعیت اقیمی ایران، تخمین زده می‌شود که یک سوم خاک یک کشور را خاک‌های شور و کوریپ شکل می‌دهد، و بیش از آن نیز، به استثمار منابع داخلی در خزر، در معرض شور و کوریپ بسنده قرار دارد (4). فعالیت‌های کشاورزی سبب افزایش تدریجی یار نمک در منطقه غیر اشباع خاک را از آب‌های زیرزمینی به سمت زهک‌ها و یا آب‌های زیرزمینی حرکت کند. به همین لحاظ است که اغلب تخلیه آب‌های زیرزمینی که به صورت چاه و حتی قنات‌های مناطق خشک و نیمه خشک به هربرداری می‌شوند، به درجه‌ای مختلف هستندند (2). اگر آب زهک‌ها به وادی‌های نسوز توسعه یافته و یا آب‌های زیرزمینی در ارتباط با آب و رودخانه‌ها باید کشف شوند، کشف آب‌گیر رودخانه تحت تأثیر قرار می‌گیرد. مقدار غلفت اصلاح آب یک رودخانه به هیچ و چهای ثابت نیست. به همین‌گونه افتراقیات دیگر، غلفت اصلاح در آن کاهش می‌یابد و بر عهده کاهش، به تصاویر می‌شود. باران که به شوران آب‌های سطحی و زیرزمینی می‌فرزند عبارتند از: زمین‌شناسی جوهر آب‌یابی، اقیمیت، هیدرژئولوژی منطقه، مجاورت آب‌نگاران صنعتی از آب‌های زیرزمینی و به هربرداری بخش جد می‌باید از آب‌های زیرزمینی مصرف ۹% زایندرود و رودخانه‌ها را اصلاح ۶۵% از آب‌های زیرزمینی از جمله و در
تغییرات کیفیت زهک‌های معمولی تخلیه شونده به زایندرود و...
<table>
<thead>
<tr>
<th>نویسه‌ای</th>
<th>جدول</th>
<th>(م/سپ)</th>
<th>(تیم)</th>
<th>(توم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H^d</td>
<td>C_3</td>
<td>N^+</td>
<td>N^-</td>
<td>d</td>
</tr>
<tr>
<td>O^2</td>
<td>S^-</td>
<td>Cl^-</td>
<td>HCO^-</td>
<td>N</td>
</tr>
</tbody>
</table>

توضیحات:

- جدول نشان‌دهنده مقادیر مولکول‌ها و اجزایی است که در فیزیک شیمی از آن‌ها استفاده می‌شود.
- (م/سپ) و (تیم) و (توم) به ترتیب میزان سطح، تغییرات و تراکم مولکول را نشان می‌دهند.
- H^d، C_3، N^+، N^-، d، O^2، S^-، Cl^- و HCO^- مواردی هستند که در تحقیقات بیشتری بهره‌مند هستند.

توجه:

- این جدول ممکن است در مقالات علمی به کار برده شود.
- فرمول‌ها و عناصر این جدول ممکن است در بسیاری از رشته‌های علوم و فنی استفاده شوند.

منابع:

- مقالات اصلی و کتاب‌های علمی و تحقیقاتی.
- سیستم‌های حسابرسی نوین و پایان‌دار.

نتایج:

- افزایش در مقادیر مختلفی از مولکول‌ها و اجزایی می‌تواند نتایج قدرتمندی بی‌گراری کرده و بهبودی را در سطوح مختلفی ارائه دهد.
- بهبودی در سطح درجه کمتر و بیشتری از مولکول‌ها و اجزایی ممکن است به‌دست آید.
- بهبودی در سطح درجه کمتر و بیشتری از مولکول‌ها و اجزایی ممکن است به‌دست آید.
مياگن ساليانه مقدار شوي (EC) زهکشي ذوب آهن (5/6 دسی زيمنس بر متر)، در مقايسه با شوي آب ورودخانه قبل از تخليل خزکشي، حدود 9/6 برابر است (جدول 2). با این وجود، به دلیل ديگر ورودخانه در این محل، مقايسه با ذوب زهکشي (جدول 1 و 2)، در نتیجه به سبب شدید اقلام آب زهکشي اثر صورتی آب زهکشي به سلامت و روند خوراکی باید به گونه ای باشد که اثرات مخلوط یا کيفيت آب زهکشي به تجربه شده به ورودخانه ضروری است.

جدول 2 مياگن ساليانه و طيف تغييرات پارامترهاي مختلف شيميايي آب زهکشي هاي سي گانه و نمونه هاي آب زايندروود را در سال 1377 نشان دهد. تغييرات مياگن pH زابه ها نشان داد که pH هر سه زهکشي قلابي است، و立از تغييرات مياني مختلف مياگن pH قلابي بود و به دلیل وجود پيركيندن و عدم تغيير زياد اين pH ورودخانه در مياگن مختلف به خاطر نبايد جلوگیری اقلام آب pH محلول است. منابع ورودخانه قبل و بعد از ورود خزکشي pH تفاوت مياني ندارد. اين مياگن ساليانه pH زهکشي هاي دور آهن، رودخانه و ستجي به ترتيب 0/95، 0/7/8 و 0/8/8، است. زايندروود به pH و به مدت توزديدي به pH آب رودخانه اموري به گونه ای مشاهده نموده است.

تغييرات مياگن ساليانه دهاتي الکتروليتيي آب زهکشي رودخانه و رودخانه زايندروود، قبل و بعد از محل تخليل خزکشي، در شکل N، EC pH نشان داده شده است. همچنین، مياگن ساليانه و غلظت كاتيونها، آنيونها و عنصر سنگين مهم آب زمین بر دو تا سه برابر به پانه هاي تغريبي، اين مياگن ساليانه و عنصر سنگين مهم آب زهکشي هم شوري زابه به مراتب زيادتر از شوري آب زهکشي مي‌باشد (جدول 2).

همداني الکتروليتيي (شورهي) بااليي سبلياری از اراضي کشاورزي شمال شرق اصفهان باعث شده که زابه اين اراضي نيز به درجات مختلف شور گامد. تسوده کشاورزي یا آب ورود اسپت آب زمین بر اصل اندازي و در نتیجه افرايش شوري زهکشي مؤثر است. شکل 1 تغييرات مياگن مياه زابه زهکشي ذوب آهن و آب زايندروود (قبل و بعد از محل تخليل خزکشي) را نشان مي‌دهد. پيشتريين شوري در اين زهکشي مربوط به تيپ ماه کلمتين آن مربوط به بيشين ماه است. تغييرات زماني مياه زابه زهکشي مربوط به تغييرات در رطعت آب شوري و كيفيت آب ابزاريا است. اين مياگن مقدار تغيير و تعرق، عموماً يوپه آب شوري كاسو نات نموده و شوري زابه ها انواريا مي‌باشد. به استثناء زهکشي رودخانه، که پيشتريين شوري آن مربوط به ماه دي است، روند مذكور در اين زهکشي ديگر (ذوب آهن و سگري) به خويش مشاهده مي‌شود (جدول 2).
جدول ۳. دی و هندایت الکتریکی رنکش‌های ذوب آمن، رودشتس و سگری در ماه‌های مختلف سال

<table>
<thead>
<tr>
<th>ماه</th>
<th>زهکش ذوب آمن (دی)</th>
<th>زهکش رودشتس (دی)</th>
<th>زهکش سگری (دی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>فروردین</td>
<td>۵/۱۰</td>
<td>۲/۹۸</td>
<td>۲/۵۰</td>
</tr>
<tr>
<td>اردیبهشت</td>
<td>۶/۳۳</td>
<td>۳/۳۷</td>
<td>۳/۸۰</td>
</tr>
<tr>
<td>خرداد</td>
<td>۶/۳۴</td>
<td>۴/۳۷</td>
<td>۴/۸۰</td>
</tr>
<tr>
<td>تیر</td>
<td>۶/۲۳</td>
<td>۴/۸۰</td>
<td>۴/۸۰</td>
</tr>
<tr>
<td>مرداد</td>
<td>۵/۰۰</td>
<td>۵/۰۰</td>
<td>۵/۰۰</td>
</tr>
<tr>
<td>شهریور</td>
<td>۲/۳۱</td>
<td>۲/۳۱</td>
<td>۲/۳۱</td>
</tr>
<tr>
<td>مهر</td>
<td>۴/۴۱</td>
<td>۴/۴۱</td>
<td>۴/۴۱</td>
</tr>
<tr>
<td>آبان</td>
<td>۵/۲۱</td>
<td>۵/۲۱</td>
<td>۵/۲۱</td>
</tr>
<tr>
<td>آذر</td>
<td>۳/۴۳</td>
<td>۳/۴۳</td>
<td>۳/۴۳</td>
</tr>
<tr>
<td>دی</td>
<td>۲/۴۷</td>
<td>۲/۴۷</td>
<td>۲/۴۷</td>
</tr>
<tr>
<td>بهمن</td>
<td>۲/۶۲</td>
<td>۲/۶۲</td>
<td>۲/۶۲</td>
</tr>
<tr>
<td>اسفند</td>
<td>۴/۲۵</td>
<td>۴/۲۵</td>
<td>۴/۲۵</td>
</tr>
</tbody>
</table>

میانگین سالانه: ۱/۳۵\textit{/ف.م}

شکل ۱. تغییرات ماهیانه‌های الکتریکی زهکش ذوب آمن و رودشتس در محل تخلیه‌های زهکش در سال ۱۳۷۷

۱۰
تغییرات کیفیت زمین‌بسته‌های معمول تخلیه شونده به زاین‌رود و...\n\[جدول 2: متوسط سالیانه فلزات سنگین در نمونه‌های آب زاین‌رود و زمین‌بسته‌های معمول تخلیه شونده به آن در سال 1377 \]

<table>
<thead>
<tr>
<th>محل برداشت نمونه</th>
<th>Pb (mg/L)</th>
<th>Cr</th>
<th>Ni</th>
<th>Cd</th>
<th>Co</th>
<th>Mn</th>
<th>Cu</th>
<th>Zn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>قبل از زهکش دوب آهن</td>
<td>DL/01</td>
<td>0/017</td>
<td>0/015</td>
<td>0/003</td>
<td>0/001</td>
<td>0/017</td>
<td>0/017</td>
<td>0/017</td>
<td>0/017</td>
</tr>
<tr>
<td>بعد از زهکش دوب آهن</td>
<td>DL/018</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/017)</td>
<td>(0/017)</td>
</tr>
<tr>
<td>زمین‌بسته دوب آهن</td>
<td>DL/019</td>
<td>(0/017)</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/017)</td>
</tr>
<tr>
<td>قبل از زهکش رودشته</td>
<td>DL/018</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/017)</td>
<td>(0/017)</td>
</tr>
<tr>
<td>بعد از زهکش رودشته</td>
<td>DL/019</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/017)</td>
<td>(0/017)</td>
</tr>
<tr>
<td>زهکش رودشته</td>
<td>DL/016</td>
<td>(0/017)</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/017)</td>
</tr>
<tr>
<td>قبل از زهکش سگزی</td>
<td>DL/017</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/017)</td>
<td>(0/017)</td>
</tr>
<tr>
<td>بعد از زهکش سگزی</td>
<td>DL/018</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/017)</td>
<td>(0/017)</td>
</tr>
<tr>
<td>زهکش سگزی</td>
<td>DL/019</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/015)</td>
<td>(0/017)</td>
<td>(0/017)</td>
<td>(0/017)</td>
</tr>
</tbody>
</table>

: اعداد داخل پرانتز معبر می‌باشند. بقیه معین کمتر از حد تشخیص دستگاه است.

اکنون زهکش و رودشته در جدول 2 و 4 بیان شده است. پیشترین شوری این زهکش مربوط به ماهی‌های تایستان و کمترین آن مربوط به ماهی‌های زمین‌بسته و بهار می‌باشد. افزایش شوری زمین‌بسته این زهکش در ماهی‌های تایستان احتمالاً به دلیل کاهش رخکه آب‌شیوعی (افرازی تبخیر و تعریق) و استفاده گسترده‌ای از شوری آب در آب‌های اراضی این منطقه است.

۳) تغییرات ماهیان هنگام اکتشاف زمین‌بسته سگزی و رودشته زاین‌رود را قبل و بعد از محل تخلیه N, EC, pH زهکش نشان می‌دهد. به برنامه‌ریزی‌های مناسبی نیاز است و غلظت کانی‌ها، آلیاژها و عناصر سنگین مهم در زمین‌بسته، به منابع با کمتر از حد تشخیص دستگاه است.
شکل ۲. تغییرات ماهیانه هدایت الکتریکی زهکش زهکش روست و رودخانه زاینده‌رود در محل تخلیه زهکش در سال ۱۳۷۷

ماد

۶۰

۵۰

۴۰

۳۰

۲۰

۱۰

۰

۱ ۲ ۳ ۴ ۵ ۶ ۷ ۸ ۹ ۱۰ ۱۱ ۱۲

ماد

۳۶

۳۲

۲۸

۲۴

۲۰

۱۶

۱۲

۸

۴

۰

۱ ۲ ۳ ۴ ۵ ۶ ۷ ۸ ۹ ۱۰ ۱۱ ۱۲

ماد

شکل ۳. تغییرات ماهیانه هدایت الکتریکی زهکش سگ زهکش روست و رودخانه زاینده‌رود در محل تخلیه زهکش در سال ۱۳۷۷
تغییرات کیفیت زهکش‌های مهم تخلیه شونده به زایندرود و...

است. دلیل اول این تفاوت، در درجه اول شوری بی‌سیاری بیشتر زهکش (میانگین سالانه 21/24 سیم تسمس بر متر)، و در درجه دوم دمکتر زایندرود در محل تخلیه این زهکش، در مقایسه با زهکش‌های دیگر (جدول 1) است. میانگین شوری زهکش سگری 6/21 زایندرود دمکتر آن، از آن زهکش رودش است (جدول 2). به دلیل کاهش شدت دمکتر زایندرود در محل تخلیه زهکش سگری (جدول 1)، و زایندرود نسبی دمکتر زهکش در مقایسه با دیگر رودخانه‌ها، اثر زهکش سگری بر شوری و غلظت اندمازه زایندرود به‌طور بسیار زیاد بوده و باعث افزایش میزان مصرف کوده و اثرات اطراف زایندرود است.

چون کوده و اثرات اطراف زایندرود عمده‌تر در شوری و غلظت اندمازه زایندرود بسیار حاصل می‌گردد. افزایش نسبی غلظت از در زایندرود در ماهه‌ای آخر سال، ممکن است به دلیل کاهش دیگر رودخانه‌های بادیش (جدول 2) (1) با وجود بالا بودن نسبی غلظت از در زایندرود در ماهه‌ای آخر سال و زهکش دوبی آن، افزایش دیگر رودخانه در محل ریزش زهکش زایاد است از زهکش بر غلظت اندمازه زایندرود بسیار کم است. به طوری که میانگین غلظت سالانه از زهکش می‌گردد در 3/6 میلی‌گرم در لتر.

بعد از تخلیه زهکش می‌رسد (جدول 2).

رونده تغییرات غلظت از معدنی در زهکش رودش است. دلیل اول این تفاوت، در درجه اول شوری بی‌سیاری بیشتر زهکش (میانگین سالانه 21/24 سیم تسمس بر متر)، و در درجه دوم دمکتر زایندرود در محل تخلیه این زهکش، در مقایسه با زهکش‌های دیگر (جدول 1) است. میانگین شوری زهکش سگری 6/21 زایندرود دمکتر آن، از آن زهکش رودش است (جدول 2). به دلیل کاهش شدت دمکتر زایندرود در محل تخلیه زهکش سگری (جدول 1)، و زایندرود نسبی دمکتر زهکش در مقایسه با دیگر رودخانه‌ها، اثر زهکش سگری بر شوری و غلظت اندمازه زایندرود به‌طور بسیار زیاد بوده و باعث افزایش میزان مصرف کوده و اثرات اطراف زایندرود است.

چون کوده و اثرات اطراف زایندرود عمده‌تر در شوری و غلظت اندمازه زایندرود بسیار حاصل می‌گردد. افزایش نسبی غلظت از در زایندرود در ماهه‌ای آخر سال، ممکن است به دلیل کاهش دیگر رودخانه‌های بادیش (جدول 2) (1) با وجود بالا بودن نسبی غلظت از در زایندرود در ماهه‌ای آخر سال و زهکش دوبی آن، افزایش دیگر رودخانه در محل ریزش زهکش زایاد است از زهکش بر غلظت اندمازه زایندرود بسیار کم است. به طوری که میانگین غلظت سالانه از زهکش می‌گردد در 3/6 میلی‌گرم در لتر.

بعد از تخلیه زهکش می‌رسد (جدول 2).

رونده تغییرات غلظت از معدنی در زهکش رودش است. دلیل اول این تفاوت، در درجه اول شوری بی‌سیاری بیشتر زهکش (میانگین سالانه 21/24 سیم تسمس بر متر)، و در درجه دوم دمکتر زایندرود در محل تخلیه این زهکش، در مقایسه با زهکش‌های دیگر (جدول 1) است. میانگین شوری زهکش سگری 6/21 زایندرود دمکتر آن، از آن زهکش رودش است (جدول 2). به دلیل کاهش شدت دمکتر زایندرود در محل تخلیه زهکش سگری (جدول 1)، و زایندرود نسبی دمکتر زهکش در مقایسه با دیگر رودخانه‌ها، اثر زهکش سگری بر شوری و غلظت اندمازه زایندرود به‌طور بسیار زیاد بوده و باعث افزایش میزان مصرف کوده و اثرات اطراف زایندرود است.

چون کوده و اثرات اطراف زایندرود عمده‌تر در شوری و غلظت اندمازه زایندرود بسیار حاصل می‌گردد. افزایش نسبی غلظت از در زایندرود در ماهه‌ای آخر سال، ممکن است به دلیل کاهش دیگر رودخانه‌های بادیش (جدول 2) (1) با وجود بالا بودن نسبی غلظت از در زایندرود در ماهه‌ای آخر سال و زهکش دوبی آن، افزایش دیگر رودخانه در محل ریزش زهکش زایاد است از زهکش بر غلظت اندمازه زایندرود بسیار کم است. به طوری که میانگین غلظت سالانه از زهکش می‌گردد در 3/6 میلی‌گرم در لتر.

بعد از تخلیه زهکش می‌رسد (جدول 2).

رونده تغییرات غلظت از معدنی در زهکش رودش است. دلیل اول این تفاوت، در درجه اول شوری بی‌سیاری بیشتر زهکش (میانگین سالانه 21/24 سیم تسمس بر متر)، و در درجه دوم دمکتر زایندرود در محل تخلیه این زهکش، در مقایسه با زهکش‌های دیگر (جدول 1) است. میانگین شوری زهکش سگری 6/21 زایندرود دمکتر آن، از آن زهکش رودش است (جدول 2). به دلیل کاهش شدت دمکتر زایندرود در محل تخلیه زهکش سگری (جدول 1)، و زایندرود نسبی دمکتر زهکش در مقایسه با دیگر رودخانه‌ها، اثر زهکش سگری بر شوری و غلظت اندمازه زایندرود به‌طور بسیار زیاد بوده و باعث افزایش میزان مصرف کوده و اثرات اطراف زایندرود است.

چون کوده و اثرات اطراف زایندرود عمده‌تر در شوری و غلظت اندمازه زایندرود بسیار حاصل می‌گردد. افزایش نسبی غلظت از در زایندرود در ماهه‌ای آخر سال، ممکن است به دلیل کاهش دیگر رودخانه‌های بادیش (جدول 2) (1) با وجود بالا بودن نسبی غلظت از در زایندرود در ماهه‌ای آخر سال و زهکش دوبی آن، افزایش دیگر رودخانه در محل ریزش زهکش زایاد است از زهکش بر غلظت اندمازه زایندرود بسیار کم است. به طوری که میانگین غلظت سالانه از زهکش می‌گردد در 3/6 میلی‌گرم در لتر.

23
شکل ۴. تغییرات ماهیانه غلظت از معدنی در زهکش ذوب آهن و آب زایندرود در سال ۱۳۷۷

شکل ۵. تغییرات ماهیانه غلظت از معدنی در زهکش ذوب آهن و آب زایندرود در سال ۱۳۷۷
تغییرات کیفیت زهکش‌های مهم تخلیه شونده به زایندرود و...

شکل 6: تغییرات ماهیانه غلظت ازت معدنی در زهکش سگزی و آب زایندرود در سال 1377

در زهکش روستای 2/92، و در زهکش سگزی 2/92 میلی گرم در لیتر است. که با توجه به حجم تخلیه زه آب‌ها (جدول 2)، به ترتیب حدود 27/19 و 30/19 تنا از این سه زهکش در طول سال 1377 وارد زایندرود شده است.

میانگین فسفر سالیانه سه زهکش فوق به ترتیب 2/84، 2/84، و 1/3 میلی گرم در لیتر است، و کل فسفر خارج شده از زهکش‌ها در طول سال 1377 برابر 1/91 میلی گرم در لیتر است.

بر خلاف ازت که در خاک متغیر است و با آب آبایی شسته شده و به زهکش‌ها می‌رسد، فسفر در خاک به سرعت تثبیت شده و حرکت آن عدماً هموارا با ذرات خاک است. غلظت زاید فسفر در زهکش ذوب آن احتمالاً به دلیل قدرت تثبیت کمتر خاک‌های این منطقه نسبت به خاک‌های شرق

جدول 2: متوسط غلظت سالیانه فازات سنگین در زهکش سگزی و مورد مطالعه و آب زایندرود را در سال 1377

نتیجه‌گیری کرد که اگر چه غلظت ازت معدنی در سه زهکش مذکور و هم چنین زایندرود در محل تخلیه زهکش‌ها دارای تغییرات ماهیانه نسبتاً زیادی است، ولی میانگین سالیانه غلظت ازت معدنی در هر سه زهکش بسیار نزدیک به هم بوده، و در مجموع نشان می‌دهد تغییرات کم این عنصر در طول رودخانه، نسبت به بعضی از عناصر دیگر تفکر سیدی و کل است. میانگین سالیانه غلظت ازت در زهکش ذوب آهن حدود 1/39 در...
نتیجه گیری
تغییرات کیفیت زدآب‌های سه زهک‌شهر اصلی، ذوب آهن، رودشتر و سگزی به درآمد و تخلیه مصرف کرده است. براساس این جدول، زهک‌شهر سهگزی هم دنبال بیشتری دارد و هم تغییرات آن افزون از دو زهک‌شهر دیگر است. مقادیر نمک تخلیه شده توسط زهک‌شهر (پارامتر سالانه) به روش زیر محاسبه شده است:
\[F_s = \frac{426 \times 4}{Q_g} EQ_c \]
که:
- \(F_s \) = نمک تخلیه شده، تن در ماه
- \(Q_g \) = حجم زدآب تخلیه شده، متر مکعب در ماه
- \(EQ_c \) = میزان ماهانه شوری زدآب، دسمی زیمنس بر متر

بر اساس جدول 3 در سال 1374 مقدار 39258 و در سال 1375 مقدار 32598 تن نمک به ترتیب از زهک‌شهر های ذوب آهن، رودشتر و سگزی به راه‌اندازی شده است. بهترین هر کدام از سه زهک‌شهر به ترتیب 11/19، 11/19 و 11/19 درصد است. اگرچه ترتیب داده می‌شود که انتقال نمک براساس مقدار دیب و سوزی ماهانه برای سالیانه مختلف متحمل شود، اما پی گرفته نمی‌کند به دست آمده قانونی به امر مالی و سالانه ناشأ‌شده باشد (19). در جدول 3 دیده می‌شود که 77/15 درصد نمک تخلیه شده به راه‌اندازی زدآب‌های سهگزی در سال 1375 مقدار است. چنین اثر ناتوانی مسئولانه همراه با کاهش دیب و رودشتر در محل تخلیه زدآب‌های سهگزی به رودخانه باعث افزایش شدید شوری آب رودخانه شده است (شکل 1). طبقاً این می‌توان به بعد، این زدآب‌های بر اساس استانداردهای موجود (10) برای کلیه مصرف‌کننده در شرایط انسانی است. نکته‌ها که در اینجا باید به آن اشاره نمود این است که از مزارع و
تفییرات کیفیت زمین‌های ممکن تخلیه شونده به یاپن‌رود و...

مباحث مورد استفاده

۱. اخوان قلی‌یاری، م. ا. جلالیان، ب. مصطفی‌زاده و س. ف. موسوی. ۱۳۷۴. شورش شدن ثانویه خاک در منطقه روستای چاک. اکمار کشاورزی ایران، ۲۵ (۱)، ۷۴-۸۴.

۲. شربیت، م. و ع. رنجبار. ۱۳۷۷. بررسی کیفیت آب‌های منطقه کریمی استان سمنان. مرکز تحقیقات مناطق کویری و بیابانی ایران، شماره ۳۷، صفحه ۲۰۰-۳.

۳. علیزاده، ا. ۱۳۷۴. آنالیز و تحلیل اثرات داشته‌این‌های، امام رضا. اصول و فنون اقلیدسی، صفحه ۴۵-۹۶.

۴. قبادیان، ع. ۱۳۷۴. پدیده‌های خشک و شادی خشک و اثرات عمده، صفحه ۴۷-۸۲.

۵. کلیسی، م. ۱۳۷۴. تغییرات فضایی در ناحیه پیوندی در مسیر یژند. آب و فاضلاب، صفحه ۸۹-۹۲.

۶. کلیسی، م. ۱۳۷۷. مدیریت زمین‌های منابع آب. گزارش پژوهش دانشکده، کشاورزی دانشگاه صنعتی اصفهان، صفحه ۲۰-۱۲۱.

۷. موسوی، س. ف. ۱۳۷۷. بررسی آلودگی و متان آلودگی کننده آب. گزارش پژوهش دانشکده، کشاورزی دانشگاه صنعتی اصفهان، صفحه ۲۰۴.

