نحوه‌ی عملکرد و اعمال فرسایش‌پذیری (K) در بخشی از خاک‌های نواحی نیمه‌خشک در شمال غربی ایران

عقارا وعاظب ۱: حسینعلی بهرامی، سیدحمیدرضا صادقی و محمدحسین مهدیان

(تاریخ دریافت: ۱۳۸۸/۰۹/۱۳؛ تاریخ پذیرش: ۱۳۸۸/۰۶/۲۹)

چکیده
ارزیابی مناسب عامل فرسایش‌پذیری خاک (K) برای پیش‌بینی قابل اطمینان فرسایش آب حائز اهمیت است. در این پژوهش، عامل فرسایش‌پذیری خاک در ۹۰۰ کیلومتر مربع از خاک‌های شهرستان هشتود واقع در ناحیه نیمه‌خشک شمال غربی ایران مورد بررسی قرار گرفت. نتایج اندوزگی مقدار هدف خاک در ۴۲ زمان مختلف در کرت‌های استاندارد تحت باران‌های طبیعی از سال ۱۳۸۴ تا ۱۳۸۶ است. برای دست‌یابی به USLE نشان داد که مقدار عامل فرسایش‌پذیری اندوکارگی شده ۸/۷۷ برابر کمتر از مقدار پراوردی با نموگراف گردید. همگی بین عامل فرسایش‌پذیری اندوکارگی شده و ویژگی‌های خاک‌ها بررسی شد. نتایج نشان داد که تنها در ناحیه آفتاب‌گیری، ویژگی‌های خاک‌ها و فرایندهای طبیعی خاک و باران مانند تیپ و باران بارانی و سیل، همگی متغیر می‌باشد. عامل فرسایش‌پذیری خاک در دانش‌نامه‌ای تحقیقی و رگرسیون چند متغیره نشان داد که نفوذپذیری خاک، پاپداری خاک‌اته، آهک و شن درست رابطه‌ای معنی‌دار (R2= ۰/۹۴) با فرسایش‌پذیری داشته. برای پراورد آسان عامل فرسایش‌پذیری، نموگرافی ارتقاء عوامل مذکور با ضریب تیپین ۹۲ درصد نهایی شد. از این نموگراف در مناطقی که دارای ویژگی خاک و باران مشابه با منطقه مورد بررسی باشند، برای پراورد مطمئن عامل فرسایش‌پذیری خاک می‌توان بهره‌گرفت.

واژه‌های کلیدی: عامل فرسایش‌پذیری خاک، ناحیه نیمه‌خشک، نموگرافی جدید، ایران

۱. به ترتیب دانشجوی سابق دکتری و دانشیار خاک‌شناسی، دانشگاه کشاورزی، دانشگاه تربیت مدرس، تهران
۲. دانشیار آبخزی‌پزشک دانشگاه منابع طبیعی، دانشگاه تربیت مدرس، تهران
۳. استاد دانشگاه پزشک سازمان تحقیقات تربیت و آموزش کشاورزی وزارت جهاد کشاورزی، تهران

* vaezi.alireza@gmail.com

69
مقدمه

فرسایش پذیری خاک یکی از عوامل شکسته‌مایه مؤثر در فرسایش به‌شمار می‌آید. این عوامل نشاندهنده سهولت چندانی در خاک در اثر ضرورت باران و تریب روانی است (77). بر اساس مدل USLE، عامل فرسایش پذیری خاک (K) از عوامل هدف‌رزيک فرسایش از خاک استندارد در واحد عامل فرسایش پذیری برای هر سال می‌آید. درصد، به عرض 0.83 و طول 0.21 متر است که در جهت شبیه‌سازی و سطح آن بدون پوشش گیاهی و پیچایی می‌باشد.

مطالعات گسترده‌ای در مورد ارزیابی USLE و USLE مطالب و روش‌ها

یک عامل مؤثر بر فرسایش پذیری انجام گرفت. مطالعات رجمن و همکاران (31) در لهستان، زاگور و همکاران (26) در چین و حسین و همکاران (14) در عراق نشان دادند که USLE نمودار فرسایش پذیری را به طور معنی‌داری بیشتر از مقدار اندازه‌گیری شده برآورد می‌سازد. پژوهش‌های مختلف نشان دادند تأثیر بیوزهای گیاهی مختلف خاک بر فرسایش پذیری خاک ارائه شد.

مطالعات USLE و USLE-ها

برای انجام این پژوهش، شهرستان هشتود، در شمال غربی ایران واقع در جنوب استان آذربایجان شرقی انتخاب شد. این منطقه بر اساس منحنی آموزشی منطقه، دارای آب و هواهای نیمه خشک ورد به میانگین باندی سالانه 345 میلی‌متر است. خاک‌های تپه‌سنگی روش تاکسینومی خاک (Soil Taxonomy U.S.D.A) این استیت‌سول و مالی‌سول قرار دادند. خاک‌های گلبپ با لایه نیمه و نفوذپذیری متوسط هستند و به طور متوسط دارای یک درصد ماده آلی و 10 درصد آهی می‌باشند. خاک‌های زراعی عمداً در شبیه‌های بین 5 تا 15 درصد قرار گرفته‌اند و زیر کشت دیم گندم قرار دارند (1). برای بررسی عملکرد USLE-پذیری خاک (K) بر اساس USLE، منطقه‌ای به مساحت 400 کیلومتر مربع در شمال شهرستان هشتود در نظر گرفته شد.

پژوهش‌های اقتصادی و قدرتی (23) اورنالیک و همکاران (9) و رودریگز و همکاران (22) بین‌المللی قدرت ماده آلی در اندازه‌گیری مقاومت خاک و کاهش فرسایش پذیری انجام گرفت. در گزارش‌های شویاب و همکاران (22) و آنیز و همکاران (6) اهمیت
نمودارهای جدید برای پروردهای عامل فرسایش‌پذیری (K) در بخش‌های از خاک‌های...

گرفتگی. این منطقه از یک‌پوش بر اساس تقسیم‌بندی اراضی شهرستان برای دست‌بایی به خاک‌های با ویژگی‌های مختلف و از سوی دیگر برای اکانت ایفا نمی‌کند زمین‌های دیم تحت آتش با شیب 8 درصد مورد نخور گرفته. فرسایش‌پذیری خاک (K) در شکل 32، بر اساس شکل با عرض 5 درصد میلی‌متر از ویژه‌های قرار گرفت. شکل 1 موقعیت منطقه مورد تهیه و شبکه‌های مورد بررسی را نشان می‌دهد. در هر شبکه یک نقطه زمین دیم در حال آتش که دارای شیب یک‌پوش‌ها می‌باشد، به عرض 9 درصد نزدیک به وسایل جریان در نظر گرفته شده، شیب‌هایی که به جنوب از این نظر انتخاب شده‌اند که دیل تغییر بالا رطوبت اولیه خاک در آنها و تانین است و نفوذپذیری خاک، کمتر تحت تأثیر رطوبت اولیه قرار می‌گیرد. برای دست‌بایی به شیب‌هایی 9 درصد و رو به جنوب، تحقیق اندازه‌گیری جهت مشخص‌کردن از نرم‌افزار Ilwis و گزارش 3 نمونه و استفاده از سیستم مکان‌بندی جهانی (Global Positioning System) آنها در منطقه مشخص شد.

تعیین فرسایش‌پذیری خاک

بر اساس نموگراف USLE بر اساس نموگراف (K) بر اساس نموگراف برای پروردهای عامل فرسایش‌پذیری خاک: یا تعیین پنج ویژگی خاک موجود در نموگراف برآورد شد و بر اساس هدف‌رفت‌خاک از استاندارد با کتک واحد (A) در واحد عامل فرسایش‌پذیری باران (R) اندازه‌گیری شد (28):

\[A = RKLSCP \Rightarrow A = RK \Rightarrow K = \frac{A}{R} \] (1)

مدیر هزینه‌ها در کرت‌ها (A) به حسب تن در هکتار در سال تعیین شد. مقدار عامل فرسایش‌پذیری باران (R) بر اساس آمار‌های باران‌گذاری واقع در شبکه‌های 17، در مجموع شاخص‌های فرسایش‌پذیری باران طی سال (R = ΣE_i) به حساب (مگالی‌متر در هفتر ساعت MJ mm ha⁻¹ h⁻¹ year⁻¹) سال بر روی وضوح و امسال (88) به دست آمد. تغییر در سطح منطقه بر اساس داده‌های باران ایستگاه باران‌گذاری شبکه 17 همراف با آمار سه ایستگاه باران‌سنجی واقع در شبکه‌های 16 و 24 بررسی شد (شکل...
شکل 1. موقعیت منطقه مورد مطالعه و شبکه‌های مورد بررسی

شکل 2. نمای گرافیکی از کرتهای واحد و وسایل جمع آوری و روانه و رسوب
نجات و بحث

نتایج تجزیه ویژگی‌های خاک نشان داد که خاک‌ها عمداً در این بحث چنین عامل‌ها نیز پوشانده بودند: ۳۷/۷ درصد میله‌مانده و حدود ۲۲ درصد سه‌نگری میله‌مانده و ۱۶ درصد سندیت. با وجود این تفاوت در این بحث، تفاوت بود که در خاک‌های مختلف، دنباله‌های مختلف بودند و کد استحصال آنها ۳ بود. توجه‌پذیری خاک‌ها، متوسط و میانگین آن در خاک‌های منطقه ۳/۶ سانتی‌متر در ساعت بود. خاک‌ها، بر اساس توجه‌پذیری خاک، متوسط در کلاس ۳ و در مواردی (خاک‌های شیب‌های کوچک، ۱/۹ و ۱/۸ در کلاس ۴) میانگین قطر گرفتن. جدول ۱ میانگین ویژگی‌های خاک‌های فیزیکی - شیمیایی خاک‌های ویژگی‌های خاک را به‌طور مفصل نشان می‌دهد.

پژوهشگر بررسی نمرات پوده داده‌ها از آزمون کولموگروف و اسمیرنوف (Kolmogorov and Smirnov test) استفاده کرد. تفاوت بین مقدار باران‌های منجر به رسیدگی در ایستگاه‌های (بررسی شد. نتایج Duncan test) سطح منطقه ۳ از آزمون دانکن (Duncan test) بین فرآشی‌پذیری این بار و اندازه‌گیری شده با آزمون ۱ توان مانی یافته جفتی شد. بررسی پژوهشگر چگونگی تأثیر ویژگی‌های خاک و فرآشی‌پذیری پژوهشگر یافته شد. از ویژگی‌های مؤثر بر عامل فرآشی‌پذیری ویژگی‌های اصلی در دستگاه نشان داده می‌باشد. نتایج PCA (Principle Components Analysis) مولفه‌های اصلی خاک را به‌طور مفصل نشان می‌دهد.

بنا بر نقشه ویژگی‌های خاک در خاک‌های شیب‌های کوچک، ویژگی‌های اصلی عبارت از ویژگی‌های ابتدا از خاک منطقه ۳ است. خاک‌های فیزیکی، شیمیایی ویژگی‌های خاک و فرآشی‌پذیری نشان داد. این بررسی با استفاده از این ممکن است که تأثیر خاصی باعث اندازه‌گیری شده با آزمون ۱ توان مانی یافته جفتی شد. بررسی پژوهشگر چگونگی تأثیر ویژگی‌های خاک و فرآشی‌پذیری پژوهشگر یافته شد. از ویژگی‌های مؤثر بر عامل فرآشی‌پذیری ویژگی‌های اصلی در دستگاه نشان داده می‌باشد. نتایج PCA (Principle Components Analysis) مولفه‌های اصلی خاک را به‌طور مفصل نشان می‌دهد.

پژوهشگر بررسی نمرات پوده داده‌ها از آزمون کولموگروف و اسمیرنوف (Kolmogorov and Smirnov test) استفاده کرد. تفاوت بین مقدار باران‌های منجر به رسیدگی در ایستگاه‌های (بررسی شد. نتایج Duncan test) سطح منطقه ۳ از آزمون دانکن (Duncan test) بین فرآشی‌پذیری این بار و اندازه‌گیری شده با آزمون ۱ توان مانی یافته جفتی شد. بررسی پژوهشگر چگونگی تأثیر ویژگی‌های خاک و فرآشی‌پذیری پژوهشگر یافته شد. از ویژگی‌های مؤثر بر عامل فرآشی‌پذیری ویژگی‌های اصلی در دستگاه نشان داده می‌باشد. نتایج PCA (Principle Components Analysis) مولفه‌های اصلی خاک را به‌طور مفصل نشان می‌دهد.

بنا بر نقشه ویژگی‌های خاک در خاک‌های شیب‌های کوچک، ویژگی‌های اصلی عبارت از ویژگی‌های ابتدا از خاک منطقه ۳ است. خاک‌های فیزیکی، شیمیایی ویژگی‌های خاک و فرآشی‌پذیری نشان داد. این بررسی با استفاده از این ممکن است که تأثیر خاصی باعث اندازه‌گیری شده با آزمون ۱ توان مانی یافته جفتی شد. بررسی پژوهشگر چگونگی تأثیر ویژگی‌های خاک و فرآشی‌پذیری پژوهشگر یافته شد. از ویژگی‌های مؤثر بر عامل فرآشی‌پذیری ویژگی‌های اصلی در دستگاه نشان داده می‌باشد. نتایج PCA (Principle Components Analysis) مولفه‌های اصلی خاک را به‌طور مفصل نشان می‌دهد.

پژوهشگر بررسی نمرات پوده داده‌ها از آزمون کولموگروف و اسمیرنوف (Kolmogorov and Smirnov test) استفاده کرد. تفاوت بین مقدار باران‌های منجر به رسیدگی در ایستگاه‌های (بررسی شد. نتایج Duncan test) سطح منطقه ۳ از آزمون دانکن (Duncan test) بین فرآشی‌پذیری این بار و اندازه‌گیری شده با آزمون ۱ توان مانی یافته جفتی شد. بررسی پژوهشگر چگونگی تأثیر ویژگی‌های خاک و فرآشی‌پذیری پژوهشگر یافته شد. از ویژگی‌های مؤثر بر عامل فرآشی‌پذیری ویژگی‌های اصلی در دستگاه نشان داده می‌باشد. نتایج PCA (Principle Components Analysis) مولفه‌های اصلی خاک را به‌طور مفصل نشان می‌دهد.
جدول ۱. میانگین و برگردانه‌های فیزیکی - شبیه‌سازی خاک‌های مورد بررسی

| انحراف معیار | بیشترین | کمترین | میانگین | برگردانه
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>شن درشت (درصد)</td>
<td>۱۷/۸۱</td>
<td>۱۸/۹۱</td>
<td>۱۸/۹۱</td>
<td>۱۳/۷۶</td>
</tr>
<tr>
<td>شن پسربه (درصد)</td>
<td>۵۷/۵</td>
<td>۵۱/۹</td>
<td>۵۱/۹</td>
<td>۴۷/۰</td>
</tr>
<tr>
<td>سیلیت (درصد)</td>
<td>۴۳/۲</td>
<td>۴۰/۹</td>
<td>۴۰/۹</td>
<td>۴۰/۹</td>
</tr>
<tr>
<td>رس (درصد)</td>
<td>۳۲/۷</td>
<td>۳۰/۶</td>
<td>۳۰/۶</td>
<td>۲۸/۸</td>
</tr>
<tr>
<td>سنگ‌پزوه (درصد)</td>
<td>۹/۸۹</td>
<td>۹/۹</td>
<td>۹/۹</td>
<td>۹/۹</td>
</tr>
<tr>
<td>ماده آلی (درصد)</td>
<td>۱/۰۹</td>
<td>۱/۰۹</td>
<td>۱/۰۹</td>
<td>۱/۰۹</td>
</tr>
<tr>
<td>آهک (درصد)</td>
<td>۱۲/۶۶</td>
<td>۱۲/۶۶</td>
<td>۱۲/۶۶</td>
<td>۱۲/۶۶</td>
</tr>
<tr>
<td>پتاسیم (میلی‌گرم در کیلوگرم)</td>
<td>۳۲۱/۴۸</td>
<td>۳۱۹/۴۸</td>
<td>۳۱۹/۴۸</td>
<td>۳۱۹/۴۸</td>
</tr>
<tr>
<td>پایداری خاک‌ها (میلی‌متر)</td>
<td>۱/۱۳</td>
<td>۱/۱۳</td>
<td>۱/۱۳</td>
<td>۱/۱۳</td>
</tr>
<tr>
<td>نفوذپذیری (سانتی‌متر در ساعت)</td>
<td>۴/۵۶</td>
<td>۴/۵۶</td>
<td>۴/۵۶</td>
<td>۴/۵۶</td>
</tr>
</tbody>
</table>

مقدار هدف‌ریز خاک (رسوب تولید شده) در ۳۵ زمین مورد توسط طی دوره پژوهش از ۴۸۶/۴۷ تا ۴۸۶/۳۳ تا ۴۸۶/۳ در هکتار در سال تغییر کرد و به طور میانگین برای ۱/۵۷ تا ۱/۵۶ در هکتار در سال بود. با توجه به اینکه توزیع مکانی برگردانه در سطح منطقه بکنواسته بود، تغییرات رسمی در شکوه‌ها به دلیل تغییر در فرسایش‌پذیری خاک آنها بود. مقدار فرسایش‌پذیری اندازه‌گیری شده بر اساس نسبت هدف‌ریز خاک سالانه به میانگین عامل فرسایش‌گر باران در ۳۶ شبکه از ۳۱/۹ تا ۳۱/۷۷ تا ۳۱/۷۷ میلی‌متر تغییر کرد. مقدار فرسایش‌پذیری برآورد از نمودار USLE USLE بر اساس مقدار میلی‌متر تغییر کرد. مقدار USLE USLE بر اساس مقدار میلی‌متر تغییر کرد. جدول ۲/۴۹ تا ۲/۴۹ تا ۲/۴۹ مقدار هدف‌ریز خاک و فرسایش‌پذیری اندازه‌گیری شده و برآوردی در منطقه مورد بررسی را نشان می‌دهد. توزیع آماری داده‌های فرسایش‌پذیری اندازه‌گیری شده و برآوردی نرم‌ال بود.

نتایج نشان داد که مقدار فرسایش‌پذیری اندازه‌گیری شده در سال ۱۳۸۴ و ۱۳۸۵ در تمام شبکه‌ها کمتر از مقدار برآوردی است. مقدار فرسایش‌پذیری اندازه‌گیری شده در ۳۶ شبکه به طور میانگین ۷/۸۷ برای کمتر از مقدار برآوردی بود. همچنین بین فرسایش‌پذیری اندازه‌گیری شده و برآوردی پابین (R²=۰/۲۱) بود. شکل ۱ همبستگی بین فرسایش‌پذیری

74
جدول 2. مقادیر هدف‌ریزی خاک و فرسایش پذیری اندازه‌گیری شده و برآورده در منطقه مورد بررسی

<table>
<thead>
<tr>
<th>شاخص آماری</th>
<th>هدف‌ریزی خاک (تن در هکتار در سال)</th>
<th>شاخص منفی</th>
<th>فرسایش پذیری اندازه‌گیری شده (تن ساعت در مگاول میلی‌متر)</th>
<th>انحراف معیار</th>
</tr>
</thead>
<tbody>
<tr>
<td>کمترین</td>
<td>0.5740</td>
<td>0.0789</td>
<td>0.0405</td>
<td>0.0100</td>
</tr>
<tr>
<td>بین‌مقداری</td>
<td>0.7530</td>
<td>0.1237</td>
<td>0.0556</td>
<td>0.0125</td>
</tr>
<tr>
<td>بیشترین</td>
<td>0.9420</td>
<td>0.1832</td>
<td>0.0679</td>
<td>0.0144</td>
</tr>
</tbody>
</table>

شکل 3. همبستگی بین فرسایش پذیری اندازه‌گیری شده و برآورده در 36 شیبک مورد بررسی

مورد بررسی را نشان می‌دهد. بر اساس نتایج، بین فرسایش پذیری خاک با شن درشت، رس، ماده آنی، آهک، پایداری خاک‌ها و تفویض‌پذیری خاک، همبستگی مشابه و با شن پیچر و سیلاب، همبستگی مشابه وجود داشت. در این پژوهش اثر کاهش شن درشت بر فرسایش پذیری با یافته‌های سانتوس و همکاران (2008) مطابقت دارد. همبستگی مشابه بین فرسایش پذیری و شن بیشتر و سیلاب، یافته‌های میلر و گاردنر (1978) را تایید می‌کند. همبستگی معنی‌دار منفی موجود بین فرسایش پذیری و رس در این پژوهش مطابق با یافته‌های

\[
K_{estimated} = 0.0259 + 2.2672 K_{measured}
\]

\[R^2 = 0.21\]
جدول 3 ماتریس همبستگی فرسایش پذیری و ویژگی‌های فیزیکی - شیمیایی خاک در 36 شیکه مختلف در منطقه مورد بررسی

<table>
<thead>
<tr>
<th>شن سیار</th>
<th>شن درشت</th>
<th>ریز</th>
<th>سیلت</th>
<th>فرسایش پذیری</th>
<th>نفوذپذیری</th>
<th>خاک‌داران</th>
<th>پایداری</th>
<th>آهک</th>
<th>ماده آلی</th>
</tr>
</thead>
<tbody>
<tr>
<td>اصل</td>
</tr>
<tr>
<td>0.22</td>
<td>1</td>
<td>0.74</td>
<td>0.75</td>
<td>0.70</td>
<td>0.50</td>
<td>0.70</td>
<td>0.21</td>
<td>0.32</td>
<td>0.30</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.75</td>
<td>0.75</td>
<td>0.70</td>
<td>0.50</td>
<td>0.70</td>
<td>0.21</td>
<td>0.32</td>
<td>0.30</td>
</tr>
<tr>
<td>0.70</td>
<td>0.70</td>
<td>0.75</td>
<td>0.75</td>
<td>0.70</td>
<td>0.50</td>
<td>0.70</td>
<td>0.21</td>
<td>0.32</td>
<td>0.30</td>
</tr>
</tbody>
</table>

منعیت در سطح احتمال 0.05

منعیت در سطح احتمال 0.01

منبع: ینظیه، نتایج تحقیقات اورنگ و همکاران (2017) و داکرک و همکاران (2018) را تایید می‌کند. در این پژوهش، پایداری خاک‌داران و نفوذپذیری خاک و ویژگی‌های فیزیکی–شیمیایی خاک را نشان داد. در هر مولفه ویژگی‌های دارای ضریب بالا (برگزاری از میانه‌ها) در این اساس، شین درشت، سیلت، و پایداری خاک‌داران از مولفه‌های اصلی (PC1) و شن سیلت، شن سیب زرد، آهک، سیلت و پایداری خاک‌داران از مولفه‌های سوم (PC3) و به عنوان ویژگی‌های اصلی شین، شین درشت، سیلت، و پایداری خاک‌داران در نظر گرفته می‌شوند. این نتایج نشان داد که بین ویژگی‌های مؤثر بر فرسایش پذیری خاک که پایداری خاک‌داران و نفوذپذیری بیشتر (برای خاک‌داران) می‌باشد. این نتایج نشان داد که بین ویژگی‌های مؤثر بر فرسایش پذیری خاک نفوذپذیری بیشتر (برای خاک‌داران) می‌باشد. این نتایج نشان داد که بین ویژگی‌های مؤثر بر فرسایش پذیری خاک نفوذپذیری بیشتر (برای خاک‌داران) می‌باشد. این نتایج نشان داد که بین ویژگی‌های مؤثر بر فرسایش پذیری خاک نفوذپذیری بیشتر (برای خاک‌داران) می‌باشد. این نتایج نشان داد که بین ویژگی‌های مؤثر بر فرسایش پذیری خاک نفوذپذیری بیشتر (برای خاک‌داران) می‌باشد. این نتایج نشان داد که بین ویژگی‌های مؤثر بر فرسایش پذیری خاک نفوذپذیری بیشتر (برای خاک‌داران) می‌باشد. این نتایج نشان داد که بین ویژگی‌های مؤثر بر فرسایش پذیری خاک نفوذپذیری بیشتر (برای خاک‌داران) می‌باشد. این نتایج نشان داد که بین ویژگی‌های مؤثر بر فرسایش پذیری خاک نفوذپذیری بیشتر (برای خاک‌داران) می‌باشد. این نتایج نشان داد که بین ویژگی‌های مؤثر بر فرسایش پذیری خاک نفوذپذیری بیشتر (برای خاک‌داران) می‌باشد. این نتایج نشان داد که بین ویژگی‌های مؤثر بر فرسایش پذیری خاک نفوذپذیری بیشتر (برای خاک‌داران) می‌باشد. این نتایج نشان داد که بین ویژگی‌های مؤثر بر فرسایش پذیری خاک نفوذپذیری بیشتر (برای خاک‌داران) می‌باشد. این نتایج نشان داد که بین ویژگی‌های مؤثر بر فرسایش پذیری خاک نفوذپذیری بیشتر (برای خاک‌داران) می‌باشد. این نتایج نشان داد که بین ویژگی‌های مؤثر بر فرسایش پذیری خاک نفوذپذیری بیشتر (برای خاک‌داران) می‌باشد. این نتایج نشان داد که بین ویژگی‌های مؤثر بر فرسایش پذیری خاک نفوذپذیری بیشتر (برای خاک‌داران) می‌باشد. این نتایج نشان داد که بین ویژگی‌های مؤثر بر فرسایش پذیری خاک نفوذپذیری بیشتر (برای خاک‌داران) می‌باشد. این نتایج نشان داد که بین ویژگی‌های مؤثر بر فرسایش پذیری خاک نفوذپذیری بیشتر (برای خاک‌داران) می‌باشد. این نتایج نشان داد که بین ویژگی‌های مؤثر بر فرسایش پذیری خاک نفوذپذیری بیشتر (برای خاک‌داران) می‌باشد. این نتایج نشان داد که بین ویژگی‌های مؤثر بر فرسایش پذیری خاک نفوذپذیری بیشتر (برای خاک‌داران) می‌باشد. این نتایج نشان داد که بین ویژگی‌های مؤثر بر فرسایش پذیری خاک نفوذپذیری بیشتر (برای خاک‌داران) می‌باشد. این نتایج نشان Dated: 16:07 IST on Saturday, January 5th 2019
نموداری یافته در بخش اول و نموداری ایالی فیزیکی - شیمیایی خاک

جدول 4: تجزیه مولفه‌های اصلی ویژگی‌های ویژگی اصلی شیمیایی خاک

<table>
<thead>
<tr>
<th>مولفه</th>
<th>ویژگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1</td>
<td>0.921</td>
</tr>
<tr>
<td>PC2</td>
<td>0.868</td>
</tr>
<tr>
<td>PC3</td>
<td>0.878</td>
</tr>
<tr>
<td>شن درشت</td>
<td>0.798</td>
</tr>
<tr>
<td>سنگ</td>
<td>0.871</td>
</tr>
<tr>
<td>رس</td>
<td>0.564</td>
</tr>
<tr>
<td>ماده آلی</td>
<td>0.598</td>
</tr>
<tr>
<td>اهک</td>
<td>0.778</td>
</tr>
<tr>
<td>طبیعت واریانس</td>
<td>0.731</td>
</tr>
</tbody>
</table>

جدول 5: تحلیل رگرسیون رابطه بین عامل فرسایش پدیده‌ای خاک (K) و ویژگی‌های اصلی مؤثر بر آن

<table>
<thead>
<tr>
<th>مدل</th>
<th>ضریب غیر این استاندارد</th>
<th>ضریب استاندارد</th>
<th>سطح معنی‌داری</th>
<th>انحراف معیار</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار ناپتربم</td>
<td>0.6999</td>
<td>0.0037</td>
<td>0.0027</td>
<td>0.0023</td>
<td>0.0001</td>
</tr>
<tr>
<td>شن درشت</td>
<td>0.6985</td>
<td>0.0024</td>
<td>0.0017</td>
<td>0.0010</td>
<td>0.0001</td>
</tr>
<tr>
<td>سنگ</td>
<td>0.6967</td>
<td>0.0022</td>
<td>0.0016</td>
<td>0.0010</td>
<td>0.0001</td>
</tr>
<tr>
<td>اهک</td>
<td>0.6964</td>
<td>0.0021</td>
<td>0.0016</td>
<td>0.0010</td>
<td>0.0001</td>
</tr>
<tr>
<td>طبیعت واریانس</td>
<td>0.6961</td>
<td>0.0022</td>
<td>0.0016</td>
<td>0.0010</td>
<td>0.0001</td>
</tr>
<tr>
<td>هدف‌برنگی‌های نیم‌بر</td>
<td>0.6954</td>
<td>0.0020</td>
<td>0.0015</td>
<td>0.0009</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

مکانیسم در سه‌ساده است. برای برعکس آسان یافته فرسایش‌پذیری (K) در خاک‌های مورد بررسی، لازم بود مطالعه رگرسیونی باشد تا به شکل نموداری ارائه شود. بر این نظر نموداری اساس شن درشت، اهک و نفوذپذیری خاک‌های ویژگی‌های ویژگی‌های اصلی مؤثر بر آن به صورت زیر بود:

\[K = 10^{-0.4999} + 10^{-0.0037} \times MWD + 10^{-0.0024} \times \text{Silt} + 10^{-0.0022} \times \text{Sand} + 10^{-0.0021} \times \text{Silt} + 10^{-0.0020} \times \text{Sand} \]

که در آن: K عامل فرسایش‌پذیری خاک در USLE بر حسب Coarse sand ساخت مگالو میلی‌متر (Coarse sand) شن درشت، آهک (A) از شکل نموداری و فرسایش‌پذیری خاک با است. در این نمودار، عامل فرسایش‌پذیری بر اساس توانایی توانایی که بر حسب MWD نفوذپذیری نیم‌برخ خاک بر حسب Ks نفوذپذیری نیم‌برخ خاک بر حسب Ks توانایی توانایی که بر حسب MWD نفوذپذیری نیم‌برخ خاک بر حسب Ks

77
روش برآورد عامل فرسایش‌پذیری خاک (K) در نمودار B، عامل فرسایش‌پذیری خاک بر اساس نفوذپذیری خاک و پایداری خاک‌های در آب با ضریب اطمینان 90/3 درصد به طور اولیه برآورد می‌شود. در نمودار C، با اعمال سه نمونه به طور اولیه برآورد می‌شود. در نمودار C، با اعمال نمونه نشان داده که نشان داده که در دو نمونه، ترتیب ضریب ترتیب در این نمونه نیز با اعمال نمونه بارود، ضریب ترتیب نمونه به وسیله عامل فرسایش‌پذیری خاک داده شده است. نشان داده که در دو نمونه، ترتیب داده شده است. نشان داده که در دو نمونه، ترتیب

نتیجه‌گیری
بررسی عامل فرسایش‌پذیری خاک (K) بر اساس اندازه‌گیری‌های صحرایی هدرفت خاک تحت رخدادهای طبیعی پاران ناحیه‌ای نیمه‌خشک در شمال غربی ایران ارایه می‌شود که مقدار اندازه‌گیری شده (K) به طور میانگین 877/68 برابر کمتر از مقدار برآوردی آن نمونه‌گرفته USLE است. این نتیجه عدم کارایی نمونه‌گرفته USLE در برآورد فرسایش‌پذیری خاک‌های این منطقه.
نمونه‌گرفی جدید برای پرآور عامل فرسایش‌پذیری (K) در بخشی از خاک‌های ...

سیاست‌گرایی

از مرکز تحقیقات حفاظت خاک و آبی‌داری تهران به حفاظت ارائه نشده‌های منطقه و از اداره آبی‌داری شهرستان هشتود به حفاظت ارائه‌های آب‌پذیری سیاست‌گرایی می‌شود.

منابع مورد استفاده

1. حکیمی، ا. 1365. مطالعات خاک‌شناسی اجتماعی منطقه‌های هشتود. نشریه شماره 167 حوزه تحقیقات خاک و آب سازمان تحقیقات آموزش و تربیت کشاورزی، وزارت کشاورزی، تهران.
2. خاکسارفر، م. 1373. فناوری علوم، اجتماعی و فرهنگی آب و فاضلاب‌کش. کشور 15-20.
4. فرآشی، ن. و. قدوسی، 1384. بررسی فرسایش‌پذیری خاک در واحد اراضی حوزه تولید حوزه تاریخ‌دار. مجموعه مقالات سومین همایش ملی فرسایش و رسوب صفحه 373-427.