مقایسه درصد و اجزای اساسی در توده وحشی بومادراز

Achillea wilhelmsii Koch

عسکر غنی، مجید عزیزی، محمد حسن زاده خیاط و علی اصغر پهلوانپورفرد جهرمی

(تاریخ دریافت: 1398/5/29، تاریخ پذیرش: 887/3/29)

چکیده

بومادراز *Achillea wilhelmsii* یکی از گونه‌های متعلق به ژنس *Achillea* می‌باشد که در بومی‌سازی نسبتاً وسیعی در مناطق مختلف ایران دارند. این گونه در طب سنتی از آن گیاه به عنوان بی‌طرف کننده، تهاب‌گیر، بیماری‌های سینه، میوه و بادشکن استفاده می‌گردد. در این تحقیق به میزان مشاهده درصد و اجزاء اساسی در توده وحشی و در خردای *Achillea wilhelmsii* مورد نظر (خراسان و فارس) گردد و سپس اساسی گیره به روش تحلیلی آب اتوست کلونی خور ترکیب (GC/MS) و کرومتوگرافی گازی می‌باشد یا طبق نگار جرمی (ICP). تراکم نتایج این مطالعات، اقدام به درک و تحقیق در درصد و اجزاء اساسی بومادراز و درجه نشانده شده تفاوت یافته یا درصد و اجزاء اساسی بومادراز به نظر درصد بیشتر از درصد مشاهده در توده وحشی و شیراز دارای 2/7 درصد اساس بیودنت می‌باشند. تحقیقات موجود در اساس توده وحشی مشاهده شده: کامفور (19970 درصد، سمنیت (1/0 درصد)، اسپینول(1/7 درصد)، آلفاپتین (1/0 درصد) و لیوبولول (6/20 درصد) و میوه‌های ترکیبات در اساس توده شیراز نشان داد. از آنجایی که در توده شیراز این ترکیبات تشخیص داده شده و همچنین ترکیبات 10/8-گاما اودسپولوم (7/50 درصد) و پنتادهیدرل می‌باشند (7/62 درصد) و بیونون ایتا (1/0/79) ترکیبات مهمی بیودنت در توده شیراز وجود داشت ولی در توده مشهد تشخیص داده نشد.

واژه‌های کلیدی: *Achillea*، او سپینول، توده وحشی، کرومتوگرافی گازی، کمپونیت

مقدمه

بومادراز *Achillea* یکی از مهم‌ترین ژنس‌های متعلق به خانواده میکدان (Asteraceae) می‌باشد (می‌باشد) (3: 9 و 21). این ژنس در ایران دارای 19 گونه علیه چند ساله می‌باشد که اغلب معرف هستند. (12). این گیاه دارویی پراکندگی نسبتاً وسیعی در

1. دانشجوی کارشناسی ارشد و استادیار علوم پزشکی، دانشگاه شیراز.
2. استاد علوم پزشکی، دانشگاه شیراز.
3. عضو هیئت علمی مؤسسه تحقیقات جنگل‌ها و منابع کشور فارس، شیراز azizi@um.ac.ir

* مسئول مکاتبات، پست الکترونیکی:

581
کسندواش (۱۳)، انسیوس (۱۱)، رازیانه (۱۷) و گل راعی (۱۸) صورت گرفته است.

گیاهان دارویی رویش یافته در مناطق مختلف از نظر ترکیبات مواد مولث فاوت‌های قابل توجهی با هم داشته و به اصطلاح به تیپ‌های شیمیایی (کمونتایب) مختلفی تعلق دارند. در واقع عوامل بسیاری از جمله شرایط آب و هوا و خصوصیات خاک اثر گرفته است. می‌تواند بر کیفیت مواد مولث تأثیر درشتی به‌اشکال متفاوتی در انجام زیادی برخوردار باشد. با این حال، شناسایی کمونتایب‌های مختلف و تعیین روابط آن با شرایط اقلیمی در اولویت تحقیقات تومسکی توقع کیت گیاهان دارویی قرار دارد.

با توجه به این تحقیم، شرایط محیطی روح مقدار و نوع ترکیبات موجود در اساس گیاهان در تحقیق حاضر بسیار اثر و شدت آن روی دو نوع وحشی گیاه بومداران در مشهد و فارس مورد بررسی و مقایسه قرار گرفته است.

مواد و روش‌ها

جمع‌آوری و شناسایی گیاهان

پیکر رویشی که در خرداد ماه ۱۳۸۵ در محله‌گلدهه کامیار از منطقه خراسان (روستای فریزی) واقع در ۷۰ کیلومتری شهر مشهد و فارس (جهنگر روستای محمود آباد واقع در ۱۰ کیلومتری جنوب شرقی خوی) جمع‌آوری و در سایه روز در دمای معنی‌دار ناحیه گردید. شناسایی گیاه و تایید گونه آن در پژوهشکده علوم گیاهی دانشگاه فردوسی مشهد انجام گردید.

در یک هفته شناسایی ناحیه گردید و خلاصه‌شده است. اطلاعات اقلیمی مربوط به مهند طبقات موجود در مرکز ملی اقلیمی شناسایی مشهدطقه دیوره آماری ۱۳۸۴-۱۳۸۵ و اطلاعات آماری مربوط به جهان طبقات موجود در هواشناسی استان فارس تطبیق داده شده است. اطلاعات اطلاعات اطلاعات و مدل اندازه‌گیری مدل آماری استان فارس از دو مدل گیاهان و کیفیت مواد مولث گیاهان دارویی شامل نشان (۱۹).

نتایج و بحث

استفاده می‌کرد است ولی بدون بررسی، تحقیقات دانشمندان این امر بومداران را تایید می‌کند (۱۵). در سونین از گل‌های خشک آن به صورت دمکراتی، استفاده می‌کنند و به چنین سونینی می‌گویند (۹) از جمله خواص دیگری که به بومداران نسبت داده‌اند می‌توان به: مسکن، ضد ورم، ضد آسواسی، ضد باکتریایی، یاد شکن، مقاوم بر طرف کننده ناراحتی‌های سینه و... اشاره کرد (۱، ۲). در واقع این تعداد خواص و استفاده‌های مختلف آن به خاطر تعداد ترکیبات موجود در اساس گیاهان ویام ل. wilhelmsii، گونه‌ای نسبتاً کوچک، غلبه، با ارتفاع ۶-۱۰ سانتی‌متر است. ساقه منشعبة و برگ‌ها سبز رنگ پوشیده از کرم سفید که آن به صورت نویگل آدیم دبهین چرم مربوط می‌گردد (۱۰) رفتار اولین بار در سال ۱۹۹۶ ترکیبات موجود در اساس این گونه را از کرم گزارش نمود. آزاد وبخته و همکاران (۱۱) ۱۵ ترکیب موجود در برگ و ۱۹ ترکیب موجود در گل این گونه را در شرایط آب و هوای نیا زاندران، مورد شناسایی قرار دادند. جوانی و همکاران (۳) ۵۵ ترکیب، معادل ۶۸/۳ درصد ترکیبات موجود در اساس این گونه، را در شرایط آب و هوایی کازرون فارس شناسایی کردند. گزارش‌های دیگری نیز در رابطه با شناسایی ترکیبات گونه‌های دیگر جنس Achillea معتقدی نیز در خصوص تأثیر شرایط اقلیمی بر کیفیت و کیفیت مواد مولث گیاهان دارویی شامل نشان (۱۹)
جدول 1 اطلاعات اقلیمی مربوط به دو منطقه مشهد و شیراز

<table>
<thead>
<tr>
<th>نیم‌سال</th>
<th>عرض</th>
<th>ارتفاع</th>
<th>مجموع بی‌خیز</th>
<th>متوسط حرارت درجه حرارت متوسط حرارت</th>
<th>متوسط حرارت حرارت مطلق دما</th>
<th>مطلق دما</th>
<th>متوسط سطح سالانه بارندگی</th>
<th>متوسط سطح سالانه سطح دریا</th>
<th>نسبی (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مشهد</td>
<td>7/2</td>
<td>21/2</td>
<td>14/2</td>
<td>42/8</td>
<td>28/3</td>
<td>184/6</td>
<td>53/0</td>
<td>36</td>
<td>29</td>
</tr>
<tr>
<td>شیراز</td>
<td>12/1</td>
<td>28/7</td>
<td>19/9</td>
<td>47</td>
<td>28/0/5</td>
<td>270/0</td>
<td>42</td>
<td>107</td>
<td>30</td>
</tr>
</tbody>
</table>

(قربانی)
(جهرم)
امیرکوثری جریمی

جهت شناسایی اجزای مشکل‌کننده انسان‌های موجود در اندام‌های مختلف حشره‌های گیاه‌خوار و برشی‌های گاز کرومانتوگراف مربوط به طیف سنگ‌چرم (GC-MS) که شرایط آن در زیر درج شده است استفاده می‌شود.

기가 کرومانتوگرافی مدل Varian Star 3400cx بایستی مانند DB5 با قطر داخلی ستون 25/0 میلی‌متر، ضخامت فیلم 1.25 میکرومتر و طول ستون 30 متر، گاز حامل هیلیوم با سرعت ۲ میلی‌متر در دقیقه استفاده می‌شود. در هر میلی‌متر از تزریق مقدار بسیار جزئی انسان، کرومانتوگرام حاصل‌های طیف‌های جرمی ترکیبات مختلف موجود در آن بررسی شد. شناسایی طیف‌هایی به کمک فنک اطلاعات جرمی، زمان بازدی، محاسبه اندازه کوانسی، مطالعه طیف‌های جرمی یک از اجزای انسان و برشی‌های گازی شکسته نمی‌شود و مقدار طیف‌هایی استاندارد و استفاده از منابع معنی‌داری قرار نمی‌گیرد.

همچنین باید توجه به سطح ذوب مشتق‌های و یک‌پیک دیگر کرومانتوگرام GC و مقایسه آن با سطح کل ذوب مشتق‌های دیگر نسبت به یک از اجزای مشکل‌کننده انسان تعبیر شد.
جدول 2. ترکیبات موجود در اساس وبومدان در شیراز و مشهد و شیراز

<table>
<thead>
<tr>
<th>شاخه پازداری</th>
<th>ترکیبات</th>
<th>ترکیبات</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alpha pinene</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Camphene</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sabinene</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beta pinene</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terpinen alpha</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cymene ortho</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,8 cineole</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terpinen-Gama</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linalool</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isopentyl-Isovalerate</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzaldehyde, dimethyl acetal</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Campholenal alpha</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinocarveol Trans</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Camphor</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinone Cis-3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pinocarveone</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isoborneole</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terpineol 4</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terpineol alpha</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mertenal</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Myrteneole</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cuminyl Aldehyde</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Menth-1,3Dien-7-AL P-</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Menth-1,3Dien-7-AL- P-T</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobormil acetate</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terpinen-7-AL Alpha</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carvacrol</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beta Caryophyllene</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alpha Guaiene</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guaiene Alpha Oxide T</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ionon< beta- ></td>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>
شاپوری این ترکیبات تشخیص داده نشده‌اند. همچنین ترکیبات ۱۰ اپی-گاما اودسمول (۴/۶ درصد)، بنر آلدهید‌های متیل استاتل (۷/۹ درصد)، یونتون آی بیتا (۷/۹ درصد)، فورفوریلتراکات (۷۸ درصد)، ازی بورنیل استاتل (۱۸ درصد)، هبیل (۷/۸ درصد)، گوانین آلفا ازیس، کاروتئول، گلوکولول، آلفا گوانین، منت (۳-دی‌بن-۲-ال‌پریا، مرتینال و مرتینول ترکیباتی بودند که در توده شیارز وجود داشتند اما در توده مشهد تشخیص داده نشده‌اند. همچنین از نظر میزان ترکیبات نیز بین این دو تولید ذوب‌دار و جایی نبود. با کمی اختلاف از نظر کمی در هر دو توده به یک اندازه وجود داشت. بررسی ترکیبات اصلی این در توده و گزارش‌های قبلی منتشر شده از ترکیبات موجود در توده‌های کازرون، نکا و اکرمان (جدول ۳) نشان می‌دهد که از نظر نوع و درصد ترکیبات اصلی بین توده‌ها اختلاف وجود دارد ولی ترکیبی است که تقریباً در تمام گزارش‌های به عنوان ترکیب اصلی گزارش شده است. همچنین ترکیبات بروتول و لینالول نیز در برخی از گزارش‌های به عنوان ترکیبات اصلی اسناد این کهونه گزارش شده است (۱۹). ۲۲)

به نظر می‌رسد که نوع و درصد ترکیبات اصلی تشکیل دهنده اساس بومداران جمع‌آوری شده از مناطق مختلف و یکدیگر تفاوت قابل ملاحظه‌ای دارند. همانطور که در جدول ۱ مشخص است ترکیباتی مثل: سمین، ازی پتیل ایزو و ادرات، اپی-گاما اودسمول، اسپاچیولول، کاروتئول، کاروپول، گیدول، کاروتئول استاتل و کامل ترکیباتی E-پتیلول، مرتینال استاتل و میومگی کل ترکیباتی می‌باشد که به صورت اختصاصی تا به حال فقط در توده‌های همکاران (۳۷) و ترکیبی که معادل ۹۸/۵ درصد ترکیبات کل را شامل می‌شود در توده کازرون تشخیص داد آزاد بخت و همکاران (۳۸) از ترکیبات بر گیر و ۹۰ درصد از ترکیبات کل توده نکا مزتنداران (به ترکیب ۱۵ و ۱۹ ترکیب) و افشار پور و همکاران (۳۱) ۱۹ ترکیب موجود در سرشاخه‌های گلدیتر، توده کردیا مورد شناسایی قرار دادند. از ترکیبات اصلی فقط دو ترکیب ۱۸ سینتول و آلفا پیون
جدول ۳ مقایسه نوع و و درصد تركیبات اصلی تشکیل دهنده اساس پومدردان جمع‌آوری شده از مناطق مختلف

<table>
<thead>
<tr>
<th>نوع خود کاراون</th>
<th>نوع نتیجه غیرکاراون</th>
<th>نوع کاراون</th>
<th>نوع نتیجه غیرکاراون</th>
</tr>
</thead>
<tbody>
<tr>
<td>60%</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
</tr>
<tr>
<td>40%</td>
<td>40%</td>
<td>40%</td>
<td>40%</td>
</tr>
<tr>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
</tr>
</tbody>
</table>

- Camphor
- Cembrene
- Borneol
- Alpha pinene
- Linalool
- Isopentyl isovalerate
- 1,8 cineol
- Carvacrol
- 10-epi gama eudesmol
- Spatulenol
- Caryophyllen oxide
- E-nerolidol
- Myrtanol
- Myrtenyl acetate
- Yomogi alcohol

دانه اشک‌های شدیدانگی که این مرکز بزرگ‌ترین کمربند بازیابی مرکز بزرگ‌ترین کمربند بازیابی و درصد شدیدانگی، دست‌پایی به کمربند‌های مختلف و افتقاد در برنامه‌های اصلاح و اصلی نمودن و در نهایت افتقاد از این توده‌ها به دنیای دانه‌های مرکز بزرگ‌ترین کمربند بازیابی در راستای تامین مواد مؤثر مورد تیزی صنایع دارویی داخلمه وخارجه بود.

سپاسگزاری

بر خودمان لازم می‌دانیم که از زحمات و خاطرات منیولین و تکنیک‌های صنعتی گیاهان دارویی گروه باگیان دانشگاه فردوسی مشهد و همچنین کارشناسان محترم جامعه گیاهان دانشگاه مشهد کمال تشکر و قدردانی را داشته باشیم.

خاصیت شناسایی دانه‌های که این مرکز بزرگ‌ترین کمربند بازیابی و درصد شدیدانگی، دست‌پایی به کمربند‌های مختلف و افتقاد در برنامه‌های اصلاح و اصلی نمودن و در نهایت افتقاد از این توده‌ها به دنیای دانه‌های مرکز بزرگ‌ترین کمربند بازیابی در راستای تامین مواد مؤثر مورد تیزی صنایع دارویی داخلمه وخارجه بود.

سپاسگزاری

بر خودمان لازم می‌دانیم که از زحمات و خاطرات منیولین و تکنیک‌های صنعتی گیاهان دارویی گروه باگیان دانشگاه فردوسی مشهد و همچنین کارشناسان محترم جامعه گیاهان دانشگاه مشهد کمال تشکر و قدردانی را داشته باشیم.

سپاسگزاری

بر خودمان لازم می‌دانیم که از زحمات و خاطرات منیولین و تکنیک‌های صنعتی گیاهان دارویی گروه باگیان دانشگاه فردوسی مشهد و همچنین کارشناسان محترم جامعه گیاهان دانشگاه مشهد کمال تشکر و قدردانی را داشته باشیم.

در مجموع مطالعه توده‌های بومی گیاهان دارویی مناطق مختلف کشور گام مؤثر در جهت شناسایی استعدادهای بالقوه
منابع مورد استفاده

Achillea wilhelmsii

2. C. Koch
3. امید بکیک. ر. ۱۳۸۴. تولید و فرآوری گیاهان دارویی جلد اول, انتشارات آستان قدس رضوی, مشهد.
4. امید بکیک. ر. ۱۳۸۴. تولید و فرآوری گیاهان دارویی جلد دوم, انتشارات آستان قدس رضوی, مشهد.
5. جابیمد. ک. م. ب. بهزادی و م. میزان. ۱۳۷۸. بررسی ترکیب‌های موجود در انسنجک بوم‌داران هزار برم. *Achillea millefolium sub sp. millefolium*. تحقیقات گیاهان دارویی و معطر ۴: ۲۷-۳۲.
7. جابیمد. ک. م. ب. بهزادی. ۱۳۸۱. بررسی ترکیب‌های شیمیایی اساسی بوم‌داران کوهستانی. *Achillea millefolium* sub sp. millefolium.
8. جابیمد. ک. م. ب. بهزادی. ۱۳۸۳. بررسی ترکیب‌های شیمیایی اساسی گل و برگ گیاه. *Achillea eriophora* DC.
9. زرگری, ع. ۱۳۷۱. گیاهان دارویی جلد سوم انتشارات دانشگاه تهران.
10. عسکری ف. سیدی کن و م. میرزا. ۱۳۸۷. نقشه کمی و کیفی اساسی در روش‌های مختلف استان تهران. فصلنامه پژوهشی تحقیقات گیاهان دارویی و معطر ایران (۱۳۷۱) ۱۹۰-۱۸۱.
11. عسکری ف. سیدی کن و م. میرزا و س. مشکی زاده. ۱۳۸۲. نقشه کمی و کیفی اساسی در دو روش‌های استان تهران. فصلنامه پژوهشی تحقیقات گیاهان دارویی و معطر ایران (۱۳۷۲) ۱۲۹-۱۲۶.
12. قهرمانی, ا. ۱۳۸۷. تولید و فرآوری گیاهان دارویی جلد سوم انتشارات دانشگاه تهران.
13. لاری و. بر، ح. حسینی زاد و ع. ج. روش‌نوازانی ۱۳۸۰. شناسایی مواد موجود در دانش گیاهان کناره‌ای. جمعی از شهید از مناطق شمالی ایران. فصلنامه گیاهان دارویی ۱: ۴۶-۴۶.
14. مظفریان، ف. ۱۳۸۲. معرفی گیاهان دارویی جلد دوم انتشارات فرهنگ معاصر تهران.
15. میزابی کیانی، ل. ح. میراحمدی. ۱۳۷۳. معرفی گیاهان دارویی جلد پنجم. جلد نشر دانشگاه تهران.
16. میرزایی، م. ل. احمدی. ۱۳۷۹. معرفی گیاهان دارویی با استون DB5 ۱۳۷۹-۱۳۸۵.
17. تیمچی آنتونی. ا. م. و. ل. میمبری. ۱۳۸۵. بررسی عامل‌های فعال در گیاه دارویی رازی‌یان. *Foeniculum vulgare* Mill.
18. شب در منطقه دماوند. فصلنامه پژوهشی تحقیقات گیاهان دارویی و معطر ایران (۱۳۷۱) ۴۷-۴۲.

__۵۸۷__
Achillea wilhelmsii Koch