مقایسه درصد اجزای اساسی دو توده وحشی بومادران

Achillea wilhelmsii Koch

عسکر غني ۱، مجید عزیزی ۲، محمد حسن زاده خیاط۳ و علی اصغر بهلولی‌نورفرد جهرمی ۴

(تاریخ دریافت: ۸/۸/۲۹ تاریخ پذیرش: ۸/۸/۲۹)

چکیده

بومادران گونه‌ای از گل‌آوران بومی است که در ایران به‌طور گسترده توسط کشاورزان و تغذیه‌گران در زمین‌های دامداری و باغ‌سازی قابل مشاهده است. این گونه دارای دو پراکندگی جغرافیایی می‌باشد که یکی از این گونه‌ها در جنوب غربی ایران و گونه دیگری در مناطق نواحی شمالی و شرقی ایران است. در این تحقیق به‌منظور مقایسه درصد اجزای اساسی دو توده وحشی بومادرا مورد نظر گردید که این گونه‌ها در جنوب غربی ایران به صورت گروهی و در مناطق مختلف نواحی شمال و شرقی ایران به صورت تک گونه نامی‌پذیره می‌شوند. تصویری از اجزای اساسی با استفاده از دستگاه کروماتوگرافی گازی (GC) و کروماتوگرافی گازی مخلوط به طبقه‌گیری جرمی (GC/MS) صورت گرفت. نتایج نشان داده نواحی مختلف نواحی جمجمه و شیروی دارای تفاوت بین این دو توده وحشی از نظر درصد اجزای اساسی دارد که این تفاوت در دستگاه‌های مختلف نواحی غربی و شرقی ایران مشاهده نمی‌شود.

واژه‌های کلیدی: بومادرا، Achillea wilhelmsii, گازی، کروماتوگرافی گازی، GC/MS

مقدمه

روستایی از گونه‌های گل‌آوران، Achillea wilhelmsii Koch، که در منطقه کوهستانی جنوب غربی ایران به‌طور گسترده توسط کشاورزان و تغذیه‌گران در زمین‌های دامداری و باغ‌سازی قابل مشاهده است. این گونه دارای دو پراکندگی جغرافیایی می‌باشد که یکی از این گونه‌ها در جنوب غربی ایران و گونه دیگری در مناطق نواحی شمال و شرقی ایران است. در این تحقیق به‌منظور مقایسه درصد اجزای اساسی دو توده وحشی بومادرا مورد نظر گردید که این گونه‌ها در جنوب غربی ایران به صورت گروهی و در مناطق مختلف نواحی شمال و شرقی ایران به صورت تک گونه نامی‌پذیره می‌شوند.

1. دانشجوی کارشناسی ارشد و استادیار علوم پایژنی، دانشکده کشاورزی، دانشگاه فردوسی مشهد
2. استاد علوم زیستی، دانشکده داروسازی، دانشگاه علوم پزشکی مشهد
3. معاون هیئت علمی مؤسسه تحقیقات جنگل‌ها و منابع کشور فارس، شیراز

azizi@um.ac.ir

* منابع مکالماتی، پست الکترونیکی‌کنگ: ۸۸/۸/۲۹

581
استفاده می‌کرده است و به شده برگ‌های نیا را در موضوع
خورنده‌ی مگزادرن و امروره، تحقیقات دانشمندان این اثر
بومادران را تایید می‌کند (15). در سوئس از گل‌های خشک
آن به صورت دمکره‌ای استفاده می‌کنند و به چنین سوئسی
می‌گویند (9). از جمله خواص دیگری که به بومادران نسبت
داده‌اند می‌توان به: مسکن، ضد ورم و اسپاسم، ضد
بکتری‌ای، جادویی به شکن، مقاییه، بر طرف کننده ناراحتی های سینه
و... اشاره کرد (1، 3، 6 و 23). در واقع این تعداد ناخواص و
استفاده‌های مختلف آن به خاطر انتقال ترکیبات موجود در
اساسنامه‌های گیاهان نیا منابعی است.

از نظر گیاه‌شناسی، گونه‌ای A. wilhelmsii
کوچک، غلیقی به ارتفاع ۳۵ تا ۱۰ سانتی‌متر است. ساقه منشعب
و برگ‌ها سبز رنگ پوشیده‌ای کریستالی هستند. گل‌های آن به
صورت نوعی گل‌های آذین دیده می‌شود که مخلوطی می‌باشد (۱۲).
مواد گیاهی آن از به‌هم پیوستن دسته‌ای گیاه‌های سیاه‌پوش
در کرکه‌های ترشحی برگ، ساقه و به ویژه گل‌ها تشکیل
می‌شود (۳، ۴ و ۹).

تحقیقات درباره ترکیبات موجود در اساسنامه‌های گیاهان
و این ایمن گیاه در استان‌های کرمان، مازندران و منطقه
کازرون فارس و همچنین کشورهای مصر و ترکیه صورت
گرفته است (۱۱ و ۲۳). افطاری پور و همکاران (۱۱) برای
اوریل بار در سال ۱۹۶۴ ترکیبات موجود در اساسنامه گیاهان
را از کرمان گزارش نمودند. آزاد بختیار و همکاران (۱)
۱۵ ترکیب موجود در برگ و ۱۹ ترکیب موجود در گل گونه را
در شرایط آب و هوای نیا مازندران، مورد شناسایی قرار داده.
مقدار ۷۸/۵ درصد ترکیبات موجود در اساسنامه گونه، را در شرایط آب و
هوای کازرون فارس شناسایی کرده‌اند. گزارش‌های دیگری
نیز در رابطه با شناسایی ترکیبات گونه‌های دیگر جنس
Achilea و... جدید (۴، ۷ و ۹، ۲۴ و ۲۵) مورد بررسی
می‌باشد. تحقیقات در جنگل‌ها نشان می‌دهد که در پاسخ به
کمیت موارد موثره گیاهان در اعمال اجتماعی

مواد و روش‌ها

جمع آوری و شناسایی گیاهان
یکپاره و الماسیر گیاه در خرداد ماه ۱۳۸۵ در مرحله گل‌دهی کامل
از مناطق خراسان (روستای فردی واقع در ۷۵ کیلومتری
شهر مشهد) و فارس (جهم رسته مهدی آباد واقع در ۱۰
کیلومتری جنوب شرقی جهرم) جمع‌آوری و در سایه در دمای
معمولی اتفاق خیلی کریستالی شناسایی گیاهان در
پوشش‌های علوم گیاهی دانشگاه فردوسی مشهد انجام گردید.
پژوهشکده علوم گیاهی دانشگاه فردوسی مشهد انجام گردید.

خلاف‌های انتهایی ااقلیمی منطقه روش نمونه‌گیری در جدول شماره ۱
خلاصه‌سازی اقلیمی مربوط به محدود کننده‌ی
اطلاعات موجود در مرکز ملی اقلیمی شناسایی مشهور عده
امامی ۱۲۶۸-۱۳۴۴ و اطلاعات آماری مربوط به جهرم طبقه
اطلاعات اداره کل هواشناسی استان فارس متطری در دوره
امامی ۱۳۵۸-۱۳۸۵ می‌باشد.
جدول 1. اطلاعات اقلیمی مربوط به دو منطقه مشهد و شیراز

<table>
<thead>
<tr>
<th></th>
<th>طول عرض</th>
<th>ارتفاع از سطح دریا</th>
<th>مجموع بارندگی</th>
<th>مطلق دما بارندگی</th>
<th>مطلق دما سالیانه</th>
<th>متوسط حداکثر درجه حرارت</th>
<th>متوسط حداکثر درجه حرارت</th>
<th>متوسط حداکثر درجه حرارت</th>
</tr>
</thead>
<tbody>
<tr>
<td>مشهد</td>
<td>59.0</td>
<td>176</td>
<td>54</td>
<td>51.0</td>
<td>53.0</td>
<td>21/2</td>
<td>21/2</td>
<td>14/2</td>
</tr>
<tr>
<td>شیراز</td>
<td>33.0</td>
<td>30.0</td>
<td>30</td>
<td>28.0</td>
<td>28.0</td>
<td>12/1</td>
<td>12/1</td>
<td>8-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
نیای و بحث

از نظر مقدار اساس‌های موجود در هر مورد سنگ‌های، توده و حوضه مشهد دارای ۶۵ درصد توده و حوضه سنگ‌های (چهرم) دارای ۶۵ درصد اساس به رنگ زرد بودند که اختلاف معنی‌داری بین این دو توده وجود داشته. جایزد نیا و همکاران (۲۳) میزان اساس توده کازرون دارای ۹/۸۷ درصد گزارش کردند. آزاد بهت و همکاران (۱) میزان اساس گل و برگ توده‌ها در مازندران با ترتیب ۹۲/۸ و ۹۸ درصد گزارش نمودند. میزان اساس نمونه‌ها نه تنها توسط خصوصیات زنتیکی، بلکه توسط خصوصیات بی‌قابل تحت تأثیر قرار می‌گیرد (۳) بنابراین توده مشهد از نظر میزان اساس بیشتر از توده شیراز بود.

آنانی نمونه‌ها توسط دستگاه گاز‌آزمایشگری GC-MS

امپیکترومبی جرمی

جهت شناسایی اجزای مشکل‌های اساس‌های موجود در این‌ها، داده‌ها مختلفی که از گیاهان مورد بررسی، از دستگاه‌های GC-MS مستقیماً مصرف به طیف سنگ جرمی (GC-MS) که شرایط که در زیر دیده است، استفاده شد. مجهز به GC-أمینوئتز مدل Varian Star 3400 cx با قطع داخلی ستون 25/5 میلی‌متر، ضخامت فیلم ۱/۵ میکرومتر و طول ستون ۹۰ متر، گاز حامل هلمیم با سرعت ۲ میلی متر در دقیقه، در هر مورد پس از تزریق مقادیر بیش از جرمی اساس، کرومومتر حاصل و طیف‌های جرمی ترکیبات مختلف موجود در آن بررسی شد. شناسایی طیف‌ها به کمک یک بانک اطلاعات جرمی، زمان بندی، محاسبه اندیس کوارس، مقاومت طیف‌های جرمی هر یک از اجزای اساس و بررسی الگوهای شکست آنها مقایسه آنها به طیف‌های استاندارد و استفاده از مبانی معتبر صورت گرفت (۶ و۲۰).

همچنین توجه به ترتیب و سنگ‌های مدل حاکی از کرومومتر GC و مقایسه آن با سطح کل زرمینجنسی درصد نسبت به یک از اجزاء مشکل‌های اساس مشخص شد.

۵۸۲
جدول 2 ترکیبات موجود در اساس بومداران .

<table>
<thead>
<tr>
<th>شاخه پایداری</th>
<th>توده شیراز</th>
<th>توده مشهد</th>
<th>ترکیبات</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>05 بکر</td>
<td>8/75</td>
<td>8/06</td>
<td>Alpha pinene</td>
<td>1</td>
</tr>
<tr>
<td>05 بکر</td>
<td>8/33</td>
<td>4/01</td>
<td>Camphene</td>
<td>2</td>
</tr>
<tr>
<td>05 بکر</td>
<td>4/24</td>
<td>4/24</td>
<td>Sabinene</td>
<td>3</td>
</tr>
<tr>
<td>05 بکر</td>
<td>1/92</td>
<td>1/92</td>
<td>Beta pinene</td>
<td>4</td>
</tr>
<tr>
<td>05 بکر</td>
<td>1/75</td>
<td>1/75</td>
<td>Terpinen alpha</td>
<td>5</td>
</tr>
<tr>
<td>05 بکر</td>
<td>1/77</td>
<td>1/77</td>
<td>Cymene ortho</td>
<td>6</td>
</tr>
<tr>
<td>05 بکر</td>
<td>8/76</td>
<td>8/76</td>
<td>1,8 cineole</td>
<td>7</td>
</tr>
<tr>
<td>05 بکر</td>
<td>1/24</td>
<td>1/24</td>
<td>Terpinen-Gama</td>
<td>8</td>
</tr>
<tr>
<td>05 بکر</td>
<td>7/24</td>
<td>7/24</td>
<td>Linalool</td>
<td>9</td>
</tr>
<tr>
<td>05 بکر</td>
<td>2/10</td>
<td>2/10</td>
<td>Isopentsyl-Isovalerate</td>
<td>10</td>
</tr>
<tr>
<td>05 بکر</td>
<td>2/47</td>
<td>2/47</td>
<td>Benzaldehyde, dimethyl acetal</td>
<td>11</td>
</tr>
<tr>
<td>05 بکر</td>
<td>0/8</td>
<td>0/39</td>
<td>Campholenal alpha</td>
<td>12</td>
</tr>
<tr>
<td>05 بکر</td>
<td>1/71</td>
<td>0/40</td>
<td>Pinocarveol Trans</td>
<td>13</td>
</tr>
<tr>
<td>05 بکر</td>
<td>1/33</td>
<td>1/33</td>
<td>Camphor</td>
<td>14</td>
</tr>
<tr>
<td>05 بکر</td>
<td>1/05</td>
<td>1/04</td>
<td>Pinone Cis-3</td>
<td>15</td>
</tr>
<tr>
<td>05 بکر</td>
<td>0/41</td>
<td>0/41</td>
<td>Pinocarveone</td>
<td>16</td>
</tr>
<tr>
<td>05 بکر</td>
<td>0/88</td>
<td>0/88</td>
<td>Isoborneole</td>
<td>17</td>
</tr>
<tr>
<td>05 بکر</td>
<td>2/20</td>
<td>2/20</td>
<td>Terpineole 4</td>
<td>18</td>
</tr>
<tr>
<td>05 بکر</td>
<td>0/34</td>
<td>0/34</td>
<td>Terpineol alpha</td>
<td>19</td>
</tr>
<tr>
<td>05 بکر</td>
<td>0/39</td>
<td>0/39</td>
<td>Mertenal</td>
<td>20</td>
</tr>
<tr>
<td>05 بکر</td>
<td>0/31</td>
<td>0/31</td>
<td>Mytenole</td>
<td>21</td>
</tr>
<tr>
<td>05 بکر</td>
<td>0/54</td>
<td>0/54</td>
<td>Cuminyl Aldehyde</td>
<td>22</td>
</tr>
<tr>
<td>05 بکر</td>
<td>0/19</td>
<td>0/19</td>
<td>Menth-1,3Dien-7-AL P-</td>
<td>23</td>
</tr>
<tr>
<td>05 بکر</td>
<td>0/88</td>
<td>0/88</td>
<td>Menth-1,3Dien-7-AL- P -T</td>
<td>24</td>
</tr>
<tr>
<td>05 بکر</td>
<td>1/75</td>
<td>1/75</td>
<td>Isobornil acetate</td>
<td>25</td>
</tr>
<tr>
<td>05 بکر</td>
<td>1/71</td>
<td>1/71</td>
<td>Terpinen-7-AL Alpha</td>
<td>26</td>
</tr>
<tr>
<td>05 بکر</td>
<td>1/05</td>
<td>1/05</td>
<td>Carvacrol</td>
<td>27</td>
</tr>
<tr>
<td>05 بکر</td>
<td>0/46</td>
<td>0/46</td>
<td>Beta Caryophyllene</td>
<td>28</td>
</tr>
<tr>
<td>05 بکر</td>
<td>0/50</td>
<td>0/50</td>
<td>Alpha Guaiene</td>
<td>29</td>
</tr>
<tr>
<td>05 بکر</td>
<td>0/75</td>
<td>0/75</td>
<td>Guaiene Alpha Oxide T</td>
<td>30</td>
</tr>
<tr>
<td>05 بکر</td>
<td>4/29</td>
<td>4/29</td>
<td>Ionon <E-beta- ></td>
<td>31</td>
</tr>
</tbody>
</table>

Achillea wilhelmsii Koch
شیراز این ترکیبات تشخیص داده نشدند. همچنین ترکیبات ۱۰-ایپی-گاما اودسمول (۶/۵ درصد)، بنز آلدهید مثیل استانل (۴/۲ درصد)، بوئون-ای-پتا (۴/۲ درصد)، فورفوریل اورکانوئات (۲/۳ درصد)، ایزو بورنیل استات (۱/۳ درصد)، دیل آپولی (۱/۸ درصد)، گواین آلفاسیکسید، کاروتول، گلوپولوئول، آلفا گوانین، منت (۳-۲-۲-۲۱) آلپارا، میرنتنل و میرنتنل

tرکیباتی بودند که در توده شیراز وجود داشتند اما در توده مشهد تشخیص داده نشدند. همچنین از نظر میزان ترکیبات نیز

بین این دو ترکیبات اختلاف بیانی وجود داشت. جایگزینی و

همکاران (۲۳)۵ ترکیب که معادل ۹۸۵ درصد ترکیبات در

بیشتر شیمی‌ای تر را نشان می‌داد در توده کازرون تشخیص داده شده بود. زیرا در ترکیبات بلبلی که این تشکیل

دهنه اساسی بومداران جمع آوری شده از مناطق مختلف با

یکدیگر تفاوت قابل ملاحظه‌ای دارند. همان‌طور که در جدول

۳ مشخص است ترکیبات مثل: سمنیر، ایزو پنتیل ایزو و اترات،

۱۰ اپی-گاما اودسمول، اسدپونول، کاروکروکول، کاروپولی،

اسکسید، ۲-نورپوبول، میرنتنل استات و میرنتنل کل ترکیباتی

می‌باشد که به صورت اختصاصی تنها حال فقط در توده

<table>
<thead>
<tr>
<th>ادامه جدول ۲</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beta Selinene</td>
</tr>
<tr>
<td>۱۴۹۰</td>
<td>۰/۵۰</td>
</tr>
<tr>
<td>۱۵۰۱</td>
<td>۵/۹۸</td>
</tr>
<tr>
<td>۱۵۵۸</td>
<td>۲/۸۳</td>
</tr>
<tr>
<td>۱۵۷۲</td>
<td>۴/۴۴</td>
</tr>
<tr>
<td>۱۵۷۷</td>
<td>۱/۸۸</td>
</tr>
<tr>
<td>۱۵۸۲</td>
<td>۲/۸۳</td>
</tr>
<tr>
<td>۱۵۸۶</td>
<td>۱/۸۰</td>
</tr>
<tr>
<td>۱۶۲۱</td>
<td>۱/۸۸</td>
</tr>
<tr>
<td>۱۶۴۴</td>
<td>۳/۵۵</td>
</tr>
<tr>
<td>۱۶۴۹</td>
<td>۰/۹۷</td>
</tr>
<tr>
<td>۱۶۸۴</td>
<td>۱/۷۳</td>
</tr>
<tr>
<td>۱۷۳۹</td>
<td>۱/۰۵</td>
</tr>
<tr>
<td></td>
<td>Eudesmol (10-epi-gama)</td>
</tr>
<tr>
<td>۹۰/۹۱</td>
<td>۹۶/۹۴</td>
</tr>
<tr>
<td></td>
<td>Eudesmol Beta</td>
</tr>
<tr>
<td></td>
<td>Cembrene</td>
</tr>
<tr>
<td></td>
<td>تعداد ترکیبات شناسانه شده</td>
</tr>
<tr>
<td></td>
<td>درصد ترکیبات شناسانه شده</td>
</tr>
<tr>
<td></td>
<td>درصد ترکیبات شناسانه شده</td>
</tr>
</tbody>
</table>

با کمی اختلاف از نظر کمی در هر دو توده به یک اندازه
وجود داشت. بررسی ترکیبات اصلی این دو توده و گزارش‌های
قبلی منتشر شده از ترکیبات موجود در توده‌های کازرون، نکا و
کرمان (جدول ۲) نشان داد که از نظر نوع و درصد ترکیبات
اصلی بین توده‌ها اختلاف وجود دارد و ۸۱ سیستم تهیه
ترکیبی است که تقسیم به این ترکیبات قرار گرفته است. همچنین ترکیبات پیوند و لینهالول شیمی‌ای ترکیبات اصلی اساس این
گونه گزارش شده است (۱، ۲۱ و ۲۲).

به نظر می‌رسد که نوع و درصد ترکیبات اصلی تشکیل
دهنده اساسی بومداران جمع‌آوری شده از مناطق مختلف با

یکدیگر تفاوت قابل ملاحظه‌ای دارند. همان‌طور که در جدول

۳ مشخص است ترکیبات مثل: سمنیر، ایزو پنتیل ایزو و اترات،

۱۰ اپی-گاما اودسمول، اسدپونول، کاروکروکول، کاروپولی،

اسکسید، ۲-نورپوبول، میرنتنل استات و میرنتنل کل ترکیباتی

می‌باشد که به صورت اختصاصی تنها حال فقط در توده

شیراز این ترکیبات تشخیص داده نشدند. همچنین ترکیبات ۱۰-ایپی-گاما اودسمول (۶/۵ درصد)، بنز آلدهید مثیل

استانل (۴/۲ درصد)، بوئون-ای-پتا (۴/۲ درصد)، فورفوریل

اورکانوئات (۲/۳ درصد)، ایزو بورنیل استات (۱/۳ درصد)، دیل

آپولی (۱/۸ درصد)، گواین آلفاسیکسید، کاروتول، گلوپولوئول،

آلфа گوانین، منت (۳-۲-۲-۲۱) آلپارا، میرنتنل و میرنتنل

tرکیباتی بودند که در توده شیراز وجود داشتند اما در توده

مشهد تشخیص داده نشدند. همچنین از نظر میزان ترکیبات نیز

بین این دو ترکیبات اختلاف بیانی وجود داشت. جایگزینی و
<table>
<thead>
<tr>
<th>ترکیبات</th>
<th>تعداد کلمه</th>
<th>تعداد نا (گل)</th>
<th>تعداد کلمه (برک)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camphor</td>
<td>9</td>
<td>19/48</td>
<td>21/12</td>
</tr>
<tr>
<td>Cembrene</td>
<td>4</td>
<td>8/7</td>
<td>11/6</td>
</tr>
<tr>
<td>Borneol</td>
<td>13</td>
<td>6/2</td>
<td>8/2</td>
</tr>
<tr>
<td>Alpha pinene</td>
<td>13</td>
<td>5/5</td>
<td>11/1</td>
</tr>
<tr>
<td>Linalool</td>
<td>14</td>
<td>5/4</td>
<td>9/4</td>
</tr>
<tr>
<td>Isopentyl isovalerate</td>
<td>13</td>
<td>8/7</td>
<td>8/7</td>
</tr>
<tr>
<td>1.8 cineol</td>
<td>16</td>
<td>10/3</td>
<td>3/6</td>
</tr>
<tr>
<td>Carvacrol</td>
<td>8</td>
<td>9/12</td>
<td>9/5</td>
</tr>
</tbody>
</table>
| 10-epi gama eudesmole | 8 | 25/1 | 25/
| Spatulenol | 13 | 12/5 | 12/5 |
| Caryophyllen oxide | 13 | 14/2 | 14/2 |
| E-nerolidol | 13 | 8/5 | 8/5 |
| Myrtenol | 8 | 9/4 | 9/4 |
| Myrtenyl acetate | 13 | 8/9 | 8/9 |
| Yomogi alcohol | 13 | 8/7 | 8/7 |

جدول 3 مقایسه نوع و درصد ترکیبات اصلی تشکیل دهنده اساس بومادران جمع آوری شده از مناطق مختلف
منابع مورد استفاده

*Achillea wilhelmsi*ii

1. آزادی‌پور، م. ک. مرئی سمنانی و ن. خوانساری. ۱۳۸۲. بررسی تركیبات شیمیایی اساسی برش و گل فصلنامه گیاهان دارویی (۹): ۵۵-۵۸.
2. کوچ، C. ۱۳۸۲. تولید و فراوری گیاهان دارویی، جلد ۱: انتشارات اسناد قدس رضوی مشهد.
3. امید بیگی. ۱۳۸۴. تولید و فراوری گیاهان دارویی، جلد ۲: انتشارات اسناد قدس رضوی، مشهد.
4. جامی‌نیا، ک. م. و ژ. رضایی، ۱۳۸۹. ترکیب‌های موجود در اسنادگاه گیاهان هزار بشر. چاپ چهارم. Achillea millefolium sub sp. millefolium.
5. ژانگی‌نیا، ک. م. و ژ. رضایی، ۱۳۸۹. بررسی ترکیب‌های شیمیایی اساسی کونه‌های گیاهان دارویی بیابانی، زرد و زاگرسی. تحقیقات گیاهان دارویی و مکمل ۹-۱۹.
7. ژانگی‌نیا، ک. م. و ژ. رضایی، ۱۳۸۹. بررسی ترکیب‌های شیمیایی اساسی اندام‌هایی گیاهی. Achillea millefolium sub sp. millefolium.
9. عکسکی، ف. سفید کن و م. میرزا. ۱۳۸۲. مقایسه کمي و كيي اساسين در رويشگاه‌های مختلف استان تهران. فصلنامه پژوهش تحقیقات گیاهان دارویی و مکمل ایران (۱۹۸۳): ۱۲۳-۱۲۷.
10. عکسکی، ف. سفید کن و م. میرزا و س. مشکی‌زاده. ۱۳۸۲. مقایسه کمي اساسين در دو رويشگاه در استان تهران. فصلنامه پژوهش تحقیقات گیاهان دارویی و مکمل ایران (۱۹۸۳): ۱۳۷-۱۴۳.
12. عکسکی، ف. سفید کن و م. میرزا. ۱۳۸۲. انتشارات مؤسسه تحقیقات جنگل‌ها و مراتع، تهران. Artemisia annua

13. عکسکی، ف. سفید کن و م. میرزا. ۱۳۸۲. انتشارات مؤسسه تحقیقات جنگل‌ها و مراتع، تهران. Artemisia annua

14. عکسکی، ف. سفید کن و م. میرزا. ۱۳۸۲. انتشارات مؤسسه تحقیقات جنگل‌ها و مراتع، تهران.
15. عکسکی، ف. سفید کن و م. میرزا. ۱۳۸۲. انتشارات مؤسسه تحقیقات جنگل‌ها و مراتع، تهران.

16. میرزا، م. و ل. احمدی. ۱۳۷۹. مجازات اسماء و ترتیب‌های شیمیایی موجود در اسناد گیاهان دارویی را بستون DB5.
17. عکسکی، ف. سفید کن و م. میرزا. ۱۳۸۲. انتشارات مؤسسه تحقیقات جنگل‌ها و مراتع، تهران.
18. عکسکی، ف. سفید کن و م. میرزا. ۱۳۸۲. انتشارات مؤسسه تحقیقات جنگل‌ها و مراتع، تهران.
19. عکسکی، ف. سفید کن و م. میرزا. ۱۳۸۲. انتشارات مؤسسه تحقیقات جنگل‌ها و مراتع، تهران.

DB5

مراجع

-A. filipendula Lam., A. biebersteinii, A. albicoccus C.A. Mey. Achillea millefolium sub sp. millefolium

-Thymus pubescens Boiss.et Kotschy ex Celark

-Artemisia annua

-Foeniculum vulgare Mill.