تأثیرنوع رقم نیشکر بر واکنش تابعی زنبور پارازیتونید
نسبت به تراکم‌های مختلف تخم ساقه‌خوار

Platytenomus hylas (Hym., Scelionidae)

و میزان پارازیتیسم Sesamia nonagrioides (Lep., Noctuidae)

علیرضا عسکریان زاده ۴، سعید محروری پور ۲ و ارسلان نره ۶

(تاریخ دریافت: ۸/۴/۱۳۸۸؛ تاریخ پذیرش: ۸/۴/۱۳۸۸)

چکیده

ارقام مختلف یک گیاه و یا گونه‌های مختلف گیاهی می توانند از طریق صفات فیزیکی و بیوشیمیایی و یا به صورت غیر مستقیم از طریق جهت غذایی میزان افزایش یافته و کارایی دندان‌های تأثیر گذار. این بررسی با هدف تعیین درصد پارازیتیسم واکنش و تعیین نسبت به تراکم‌های مختلف تخم ساقه‌خوار*Platytenomus hylas* Nixon تابعی زنبور پارازیتونید می‌باشد. در این ویژگی رفتاری پارازیتونید به عنوان یک از روش‌های ارزیابی زنبور یاد شده در ارقام مختلف نیشکر انجام گردید. در مزرعه با جمعیت آفرینی تخم آفتاب از مزارع نیشکر در سه رقم نجاتی (۱۰۳، CP57-614، CP48-103، CP69-1062) درصد پارازیتیسم در هریک از ارقام نجاتی گردید. به منظور تعیین واکنش تابعی زنبور، تخم‌های جمعی آفرینی شده کلاسیفیک شدند. سپس واکنش تابعی زنبور در تراکم‌های ۰، ۴، ۲۵، ۳۰، ۶۰، ۹۰ در لوله آزمایش (به اعداد ۸۸/۱۶اماده) مورد بررسی قرار گرفت. برای تعیین کلیدی مجسمه پارازیتیسم*P. hylas* نشان داد که میزان پارازیتیسم تخم‌های متاثر از رقم ۱۰۳ در بین سه رقم نیشکر دارای اختلاف معنی‌دار است و میزان پارازیتیسم*Platytenomus hylas* میزان نشان داد که در تخم‌های آفرینی شده در سه رقم مورد مطالعه از نوع سوم است. میزان پارازیتیسم*Platytenomus hylas* در هریک از۴، ۲۵، ۳۰، ۶۰، ۹۰ در لوله آزمایش مقدار ۱۶اماده محسوب شد. سپس واکنش تابعی زنبور در سه رقم نجاتی (۱۰۳، CP57-614، CP48-103) مورد بررسی قرار گرفت. یکی از این ارقام CP69-1062 به طور معنی‌داری کمتر از دو رقم دیگر است.

واژه‌های کلیدی: ارقام نیشکر، واکنش تابعی* Sesamia nonagrioides*، Platytenomus hylas

1. دانشجوی سابق دکتری حشرشناسی کشاورزی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران و در حال حاضر استادیار کیوبیوتیکی، دانشکده علوم کشاورزی، دانشگاه شاهد، تهران
2. استادیار جهشینگان، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران
3. مدرس هیئت علمی مرکز تحقیقات نیشکر، اهواز

askarianzadeh@shahed.ac.ir
مقدمه

سنگ‌خواران معمولاً در اقلام مقاوم به عنوان یکی از موثرترین سایه‌های تأثیرگذار در اقلام فعالیت دستگاه‌های فندکی و درختندگی جهانی بهره وار هستند. برخی از اقلام مهم در شرایط مختلف حیاتی صورت گرفته است که به عنوان یکی از موثرترین سایه‌های تأثیرگذار در اقلام فعالیت دستگاه‌های فندکی و درختندگی جهانی بهره وار هستند.

سنسیتی زیستی اقلام Sesamia cretica Lef. و Sesamia nonagrioides P. در اقلام مختلف فعالیت دستگاه‌های فندکی و درختندگی جهانی بهره وار هستند. برخی از اقلام مهم در شرایط مختلف حیاتی صورت گرفته است که به عنوان یکی از موثرترین سایه‌های تأثیرگذار در اقلام فعالیت دستگاه‌های فندکی و درختندگی جهانی بهره وار هستند.

از آنجایی که اقلام مقاوم به عنوان یکی از موثرترین سایه‌های تأثیرگذار در اقلام فعالیت دستگاه‌های فندکی و درختندگی جهانی بهره وار هستند، در این مقاله تأکید گردیده است که به عنوان یکی از موثرترین سایه‌های تأثیرگذار در اقلام فعالیت دستگاه‌های فندکی و درختندگی جهانی بهره وار هستند.
پیامدهای رفتاری و کارکردی دشمن طیبی تأثیر گذاراند (۱۲).

جهت ارزیابی این تأثیر غیر مستقیم، از یوزگه‌های مختلف
رفتاری از جمله میزان پرازگشته و تراکمی مختلف میزان
(واکنش تابعی) استفاده می‌شود (۳۳) و (۳۱).

مطالعات متعددی روی نقش گیاه میزان حشرات آفت در
تغییر رفتار درمان طیبی به ویژه رفتار واکنش تابعی انجام
شد است (۸، ۱۹، ۱۰) که از این جمله می‌توان به
مطالعات تغییر پیور (۷) و تغییر روی همکاران (۸) روي و واکنش

Trissolcus granidis (Hym.: Eurygaster)

Eurygaster به تراکمی مختلف تخم سن گندم (Scelionidae)

Eurygaster در ارقام مقوای و حساس

inverteps (Hct.: Scudderligidae)

گندم اشامه نمود. این به در رابطه با ساقه‌خواران

Zebin پرازگشته تخم آن در نشکن‌ها اکنون مطالعه‌ای انجام

شد است و این بررسی برای اولین بار انجام می‌شود.

این بررسی به‌هم تعبیری تاکید زنبور پرازگشته

P. hylas نسبت به تراکمی مختلف تخم ساقه‌خوار

و تغییر میزان تأثیر نوع رقم در این ویژگی

Eurygaster پرازگشته به عنوان یکی از روش‌های ارزیابی کارایی

زنبور یاد شده در ارقام مختلف نیشکر انجام گردید.

مواد و روش‌ها

۱. طراحی آزمایش‌ها

برای بررسی انداز متقابل گیاه و دشمن طیبی در نوع آزمایش

در نظر گرفته شد:

الف) تأثیر گیاه میزان بر دشمن طیبی در شرایط مزرعه

برای این مفهوم در شرایع هر نسل آفت (نیمه‌فروردین، نیمه

خرداد، نیمه مرداد و نیمه مهر) به گروه آوری تخم آن به تفاوت

رقم از مزرعه کشت و صحت اکبر کودک واقع در جنوب خوزستان

اقدام گردید. در هر بار پیش از هر هزار تخم از هر رقم جمع آوری

گردید. تخم‌های جمع آوری شده به اثاثک رشد (با دمای روز

۱-۲۴ درجه سانتی‌گراد، دمای شب ۱-۲۵ درجه سانتی‌گراد

۲۷۷
۲. تجزیه و تحلیل داده‌ها

تجزیه و تحلیل داده‌های ثبتی در دو مرحله و با استفاده از نرم‌افزار SAS به روش جولیانو (17) انجام شد. برای تعیین نوع واکنش تابعه ابتدا رگرسیون چندپارامتریک (Logistic Regression) نسبت تخمینی واکنشی شده به (Na) تخمین‌های موجود در تراکم اولیه (Na) انجام شد. این رگرسیون میزان ثابت و منفی یا مثبت بودن ثابت سه قسمت اصلی Na = N_A (تستی Q نسبتی) منحنی دچرخه درجه دچرخه، درجه دچرخه و درجه دچرخه در نمودار می‌شود (26). نظر به این که در واکنش ثابی نوع دوم این افراشگی تراکم میزان از نسبت میزان‌های پارامترهای شده کاملاً می‌شود (وابسته به عکس تراکم میزان‌ها) لذا قسمت ابتدا آن منحنی یعنی خروجی دارای شیب منفی بوده و عدد پراورد شده پراش آن نتیجه جهشی و خروجی موجود بودن آن می‌توان به نوع دوم بودن واکنش ثابی (19 و 17) در واکنش ثابی نوع دوم این افراشگی تراکم میزان‌ها ابتدا نسبت میزان‌های پارامترهای شده افراشگی یافته (وابسته به تراکم میزان‌ها و سبب از میزان آن که می‌شود به همین لحاظ عدد پراورد شده پراش قسمت خصیپ منفی‌باید به نشانگر ثابت پراش منحنی اشت. بنابراین علائم منفی یا متغیر مثبت با معنی قسمت خصیپ منحنی Na/N_A به‌وجود بوده و علامت دو قسمت درگیر به ترتیب مشاهده و واکنش ثابی نوع دوم پا سوم می‌باشد (8).

در مرحله دوم پس از تعیین نوع واکنش ثابی، با استفاده از رگرسیون غیرخطی (روش Least square به تراکم‌های クリート (T)) جستجوی ضریب محله (a) و زمان دست‌بایی (T) برای شده. میزان جستجوی انجام شده توسط پارامترهای نشان می‌شود a

\[
\text{Na} = a T N_A / \left(1 + \text{e}^{-a (T - N_A)}\right)
\]

\[
\text{Na} = N_A \left[1 - \exp\left(\frac{a (T - N_A)}{1 + b N_A}\right)\right]
\]

\[
a = \frac{d + b N_A}{1 + c N_A}
\]

\[
a = \frac{d + b N_A}{c = 0, d = 0}
\]

\[
a = \frac{d + b N_A}{c = 0, d = 0}
\]

\[
a = \frac{d + b N_A}{c = 0, d = 0}
\]

\[
a = \frac{d + b N_A}{c = 0, d = 0}
\]

\[
\text{دقت جستجو و زمان دست‌بایی}
\[
\text{برای واکنش ثابی نوع سوم مطالب ناشی از جولیانو (17)}
\]

\[
\text{مورد مهارت و آزمایش}
\]

\[
\text{T} = \text{Na} - \text{Na}_T
\]

\[
\text{برای تحقیق و دریافت نتایج مناسب است که}
\]

\[
\text{به ترتیب مشاهده و واکنش ثابی نوع دوم پا سوم می‌باشد (8).}
\]

\[
\text{در مرحله دوم پس از تعیین نوع واکنش ثابی، با استفاده از}
\]

\[
\text{رازگیری غیرخطی (روش Least square به تراکم‌های クリート (T))}
\]

\[
\text{جستجوی ضریب محله (a) و زمان دست‌بایی (T) برای شده.}
\]

\[
\text{میزان جستجوی انجام شده توسط پارامترهای نشان می‌شود a}
\]
جدول 1. درصد پارازیتیسم نخم سافه خوازان CP69-1062 و CP57-614 , CP48-103

<table>
<thead>
<tr>
<th></th>
<th>CP57-614</th>
<th>CP69-1062</th>
<th>نسخ آفت</th>
<th>نسل بررسی</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP48-103</td>
<td>16/80</td>
<td>17/50</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>(179)</td>
</tr>
<tr>
<td>80/60</td>
<td>24/60</td>
<td>55/50</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>91/75</td>
<td>75/75</td>
<td>75/50</td>
<td>2</td>
<td>(1388)</td>
</tr>
<tr>
<td>123/46</td>
<td>94/90</td>
<td>94/80</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>93/105</td>
<td>82/55</td>
<td>82/80</td>
<td>2</td>
<td>(1382)</td>
</tr>
<tr>
<td>93/49/16/95</td>
<td>82/38/4/19</td>
<td>82/38/4/19</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>91/75</td>
<td>75/80</td>
<td>75/80</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>123/46</td>
<td>94/90</td>
<td>94/80</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>93/105</td>
<td>82/55</td>
<td>82/80</td>
<td>2</td>
<td>(1382)</td>
</tr>
</tbody>
</table>

نتایج و بحث

میانگین پارازیتیسم نخم سافه خوازان CP69-1062 و CP57-614 در سه رقم تجاری 103-37/13 و CP48-103 به ترتیب: 13/88225/36862 و 87/93452/1627462

پارازیتیزم نخم آفت توسط زنبور Sesamia spp. در بین ارقام P. hylas مورد بررسی دارای اختلاف معنی‌دار بود به عبارت دیگر میزان پارازیتیزم نخم‌های آفت میانگین می‌باشد. مقایسه میانگین ها با آزمون دانک نشان داد که میزان پارازیتیزم در رقم CP48-103 حداکثر دو رقم دیگر بیشتر بود و

279
جدول ۲: تجزیه و تحلیل رگرسیون لجستیک برای قسمت‌های مختلف منحنی درجه ۳، نتیجه‌های پارامترهای شده توسط زنیور CP57-614، CP48-103 و CP69-1062 برای تبعیض نوع واکنش تابعی در سه رقم تجاری نیشکر: 103، P. hylas

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>مقدار برآورد شده سیب</th>
<th>CP69-1062</th>
<th>CP57-614</th>
<th>CP48-103</th>
</tr>
</thead>
<tbody>
<tr>
<td>نتایج</td>
<td>۲/۷۳۱۴</td>
<td>۲/۸۴۱۴</td>
<td>۲/۷۳۱۴</td>
<td></td>
</tr>
<tr>
<td>ظرفیت</td>
<td>۰/۷۵۶۴</td>
<td>۰/۷۵۶۴</td>
<td>۰/۷۵۶۴</td>
<td></td>
</tr>
<tr>
<td>درجه دوم</td>
<td>۰/۳۳۱۴</td>
<td>۰/۳۳۱۴</td>
<td>۰/۳۳۱۴</td>
<td></td>
</tr>
<tr>
<td>درجه سوم</td>
<td>۰/۹۹۹۹</td>
<td>۰/۹۹۹۹</td>
<td>۰/۹۹۹۹</td>
<td></td>
</tr>
</tbody>
</table>

مقایسه پارامترهای برآورد شده پرهای هرکی از آزمایش‌ها در سه رقم مورد آزمایش نشان داد که قدرت جستجوی زنیور در رقم 103 به مراتب پیشتر از دو رقم دیگر است و به توجه به حدود اطمنان این سه رقم مشخص شد که قدرت جستجو در رقم 103 BA دو رقم دیگر اختلاف معنی‌دار دارد و در ثانیه CP57-614 و CP57-61062 فاقد میزان پارازیتیسم برآورد شده توسط مدل (T/Tb) در سه رقم نفاوت داشته و در رقم 1062 به طور معنی‌داری کمتر از دو رقم دیگر بود. مقادیر مربوط به میزان پرها داده‌ها با مدل (T/Tb) در جدول ۳ درج شده است.

با مقایسه نتایج آزمایش‌ها واکنش نابعی و میزان پارازیتیسم تخم آفت در مرور می‌گذرد. و نتایج مشابه می‌شود که نتایج مشابه به دو مقدار جستجوی زنیور و میزان پارازیتیسم تخم در مزرعه، در رقم 103 به مقدار میزان پیشتر از دو رقم دیگر است. از این نتایج می‌توان استنباط نمود که اثر رقم از طریق جنبه‌های فیزیکی آفت قطعی است. از طرف مقابل نتایج این دو آزمایش صحت پارازیتیسم برآورد شده واکنش تابعی توسط مدل استفاده شده را نشان می‌دهد.

بر اساس نتایج آزمایش‌های انجام شده توسط تکاندهای میزان آلودگی به آفت در رقم 1062 به مراتب پیشتر از دو رقم

دانه‌ها برآورد شده توسط مدل هولینگ تریسم شده‌اند. شکل ۳ نشان داده شده است. در آزمایش‌های انجام شده دانه‌های مربوط به واکنش تابعی با هر دو مدل هولینگ و راجرز برآورد داده شدن اما مدل هولینگ بهتر توانست این دانه‌ها را توصیف نکنند و بهترین برآورد را برای آزمایش‌های قبلی جستجو و زمان دست یابی با خطای معيار کم و حدود اطمنان مناسب ارائه داد. مقادیر برآورد شده برای a، b و c توسط مدل و هم‌چنین میزان پرها داده‌ها با مدل (T/Tb) در جدول ۳ درج شده است.

۲۸۰
پ. هیلاس

شکل 1. واکنش‌های پاتوژنپاتوجی از نوع سوم (A) و (B) و (C) و نسبت تخم‌های پاتوژنپاتوجی شده (A و B و C) توسط زنبورینه توسط CP48 و CP57-614 و CP69-1062 در سه رقم نجایي نیشکر: 103 شکل 1. واکنش‌های پاتوژنپاتوجی از نوع سوم (A) و (B) و (C) و نسبت تخم‌های پاتوژنپاتوجی شده (A و B و C) توسط زنبورینه توسط CP48 و CP57-614 و CP69-1062 در سه رقم نجایي نیشکر: 103

بر اساس نتایج این تحقیق، نوع رقم در نتایج داشته که موثر و دو زرد اثر کارایی آن را تحت تأثیر قرار می‌دهد. همچنین اثر آنتیتیزوزی ارقام گیاهی بر آنتیتیزوزی دیگری توسط نگارندگان بهره وری و تاثیت شده است و مشخص شده که رقمی S. nonagrioides یافته‌های ساده‌تری را از CP69 و CP57-614 و CP48-103 را در رقم CP57-614 و CP48-103 برای CP69-1062 و CP57-614 از جمله مقاومت آنتیتیزوزی رقم بر آفت (6) احتمالاً مهم تر باشد.
جدول 3. مقدار برآورد شده توسط مدل هولینگ نوع III برای پارامترهای واقعی تابع زنبور

<table>
<thead>
<tr>
<th>T/Tn</th>
<th>r²</th>
<th>Tn (h)</th>
<th>a (h⁻¹)</th>
<th>حدود اطمینان b</th>
<th>نوع واقعی</th>
<th>رقم</th>
</tr>
</thead>
<tbody>
<tr>
<td>60/5</td>
<td>0.76</td>
<td>0.014±0.00011</td>
<td>V/2.0</td>
<td>0/0.974±0.00007</td>
<td>Holling(III)</td>
<td>CP48-103</td>
</tr>
<tr>
<td>55/6</td>
<td>0.58</td>
<td>0.019±0.00024</td>
<td>V/2.0</td>
<td>0/0.974±0.00007</td>
<td>Holling(III)</td>
<td>CP57-614</td>
</tr>
<tr>
<td>200</td>
<td>0.74</td>
<td>0.005±0.00020</td>
<td>V/2.0</td>
<td>0/0.974±0.00007</td>
<td>Holling(III)</td>
<td>CP69-1062</td>
</tr>
</tbody>
</table>

هم گستر تابع زنبور در درصد پارامترهای تخم آفات در
مقایسه با دو رقم دیگر بالاست و هم آفت را پیش‌تر به خود
جلب می‌کند. لذا احتمال ارتباطی از نشکر که آفت را پیش‌تر به
خود جلب می‌کند، دشمن طبعی آن را نیز پیش‌تر می‌تواند جلب
کند. به عبارت دیگر، اثر رقم حساس در جلب آفت تنها در
با جلب دیگر، تخم آف‌ت خیلن می‌شود.

نتیجه این تحقیق در خصوص تفاوت فنار دستی طبیعی در
ارقام مختلف یکی با نتایج مطالعات دیگران قابل مقایسه است.

هدف پور و همکاران (9) با تحقیق و اکتش تابع زنبور پاراژینیز
E. integriceps به تراکم‌های مختلف تخم صنیو T. grandis
در ارقام مفاوتی و حساس کسی نشان داده‌اند که واکنش تابعی
زنبور پاراژینیز با داشتن یک رقم است. به
طوری که نوع واکنش تابعی در بعضی از ارقام نوع دوم و در
برخی دیگر، نوع سوم است. مطالعات زیادی وجود دارد که نشان
می‌دهد واکنش تابعی که دشمن طبیعی در میزبانی مختلف
آفت متفاوت است (9, 19, 21, 22 و 23). در واکنش تابعی،

سپاسگزاری
نگارنده‌زنی که همکاران در مرکز تحقیقات نشکر که امکان
اجرا این تحقیق را فراهم نمودند تحقیق و قدردانی می‌نماید.

منابع مورد استفاده

1. دانایی. م. 1355. دیپ شناسان ساکه خواد نشکر در منطقه هفت نه خوزستان. نشریه شماره 24 مؤسسه بررسی آفات و
بیماری‌های گیاهی، تهران.

2. دانایی. م. 1363. بررسی کاربرد روش‌های مبارزه پیژوهیک، زراعی و صیادی بر علیه ساکه خواران نشکر در منطقه هفت نه
خوزستان. پایان نامه کارشناسی ارشد حشره شناسی، دانشگاه شهید چمران اهواز.
25. Sahragard, A. 1989. Biological studies on Dicondylus indianus (Olmi), with particular reference to foraging

