اثر کاربرد پوتوتین بر عمر و فيژیولوژی پس از برداشت

میوهای پوت-فرنگی، زردآلو، هل و گیلاس

محمدرضا زکایی خسروشاهی و محمود اثیعی

(تاریخ دریافت: 85/8/14; تاریخ پذیرش: 86/9/27)

چکیده

تأثیر غله‌های مختلف پوتوتین بر سرود روز دار بر عمر پس از برداشت میوه‌های پوت-فرنگی، زردآلو، هل و گیلاس هر یک به صورت جداگانه، در قالب طرح‌های کاملاً تصادفی و در سه تکرار مطالعه شد. میوه‌ها در محلول پوتوتین به غلظت‌های 0، 0.5، 1، 1.5 و 2 میلی‌مولار به مدت 5 دقیقه برای بهبود سطح مولکولی پر رنگ و تنها آب مصرف (شاهد) غوطه‌بر شده و سپس به یکچال متنق گردیدند. طول انباشته با کاربرد پوتوتین به طور معنی‌داری در تمامی میوه‌ها افزایش یافت. این ماده تولید ایمن و میزان از خستگی دان آب میوه‌ها را کاهش داد و از ترم شدن بافت آن‌ها طی انبارداری چلوگیری نمود. در طول مدت راه اندازی، اسیدهای قابل تتراسون میوه‌های تیمار نشده روند کاهشی و pH میوه‌های انبارداری میوه روند افزایشی نشان داد. با استفاده از پوتوتین در روند مذکور همچنان وجود داشت اما شتاب آن‌ها نسبت به شاهد بسیار کمتر بود. استفاده از پوتوتین مواد جاذب محلول را در گیلاس افزایش و در سایر میوه‌ها کاهش داد.

واژه‌های کلیدی: پوتوتین، زردآلو، هل، گیلاس، پوتوتین، عمر پس از برداشت، ایمنی

مقدمه

پوتوتین، زردآلو، هل و گیلاس از میوه‌های گوشته و آبدار هستند و به خاطر داشتن آب زیاد و سرعت بالای نفلز در دوره پس از برداشت، شدیداً در معرض فساد بوده و انباشته بیمار کوتاهی دارند. کاهش سرعت رسیدن و به توانای انداختن مرحله پیری در این قبیل میوه‌ها به منظور انبارداری آنها بسیار ضروری به نظر می‌رسد. با بی‌کار بودن مواد مغذی پلی آمین‌ها (Polyamines) که رسیدن میوه به ناخن اسیدهای پوتوتین (Putrescine، میوان انباشته میوه‌ها و یوز پرم‌های کیفی این میوه‌ها را نا حذوی بهبود بخشید (22).

1. به ترتیب دانشجوی سابق کارشناسی ارشد و استادیار علوم بافتی، دانشکده کشاورزی، دانشگاه بهلوی سیستان، همدان
m.esnaashari@basu.ac.ir

219
می‌شوند (8). همچنین ممکن است که از طریق اتصال به اسیدهای فتوی نقص دفاعی در گیاه داشته باشنده (11).

دقیده بین این است که پلی‌امین‌ها خاصیت ضدپدیداری دارند (4). نقص ضدپدیداری پلی‌امین‌های برون‌زدای برای اولین بار در پروتابلاست گیاه جدید شده از موزیل برکیتولیف مشاهده شد (12).

مکانیسم تأثیر فوتی نقص ضد اینلی شناسنده پلی‌امین‌ها معمولاً از تولید آنزیم‌های ضدپدیداری پروری سرعت ایالان از تولید و فعالیت ایالان در شرایط in vivo و جلوگیری می‌کنند (2). ارقام گوجه‌فرنگی که طول ایدات مانی آنها به دلیل تأثیر این اندازه پربری بیشتر از سایر گونه‌های می‌باشد.

پوست‌های توده‌بندی می‌کنند (15) و (16). یکی از آثار مهم تیمار برون‌زدای پلی‌امین‌ها اپریپری سبز و میوه‌ها افزایش سفید فانت می‌باشد. افزایش سفید و کاهش نرم شدن بافته در پس‌سیر از متحملات از این نسبی به سوپر میکروناکزین (22). یکی از آثار مهم تیمار برون‌زدای پلی‌امین‌های این مانند میوه‌ها با سفید میوه‌پسی بستگی به تعادل میزان نیترات‌گذاری پلی‌امین‌ها بر سطح میوه بستگی به تعادل بارهای مثبت آن‌ها دارد. میوه‌هایی که محتوی ویژگی‌های زیادی از مولکول‌هایی که طرفی، کاتیون‌های آن‌ها بودند، عمر پس از برداشت بیشتری نیز داشتند. طرفیت کاتیون‌های پلی‌امین‌ها به ترتیب زیر است:

1. پوست‌های اسپرمین‌دین‌ اسپرمین‌دین

2. پوست‌های اسپرمین‌دین‌ اسپرمین‌دین

3. پوست‌های اسپرمین‌دین‌ اسپرمین‌دین

4. پوست‌های اسپرمین‌دین‌ اسپرمین‌دین

5. پوست‌های اسپرمین‌دین‌ اسپرمین‌دین

6. پوست‌های اسپرمین‌دین‌ اسپرمین‌دین

7. پوست‌های اسپرمین‌دین‌ اسپرمین‌دین

8. پوست‌های اسپرمین‌دین‌ اسپرمین‌دین

مه‌ری به این اثبات بررسی تأثیر گل فلفسی مختلف پوست‌های اسپرمین‌دین‌ اسپرمین‌دین فرمول شده، که باعث بهبود در پاتولوژی گیاه که بروز برون‌زدایی، کاهش ورم پس از برداشت ومی‌باشد، می‌باشد.

پوست‌های اسپرمین‌دین‌ اسپرمین‌دین و تغییرات مختلف (پیوسته‌های pH) از پوست فصل رنگ در سه‌گونه مولکول‌های این‌ها در داخل انبارداری آنها بوده است. برای این منظور از دو نوع فرازگرکا
نتایج و بحث
تأثیر پوترسین بر تولید اینان یا توزیع میوه
اگرچه تولید کلی میوه‌های انجمن‌های آفایی یافت، اما
تعداد پوترسین‌های طبیعی در اینان‌های آفایی مایه (5%)
زاویه اینال را در میوه‌ها نسبت به شاهد کاهش داد (شکل 1)، به طوری که
نادرست میزان تولید اینال مربوط به شاهد (تیمار خشک در
تورت فرنگی) کمتر از میزان آن مربوط به میوه‌های بود که با
پیشترن غلظت پوترسین تیمار شده بودند. به عبارت دیگر
افایی غلظت پوترسین از تولید اینال کاملاً تفاوت به این حال
اختلاف بین اثر غلظت‌های مختلف پوترسین در میوه‌های
تورت فرنگی در روز پنج انبازداری و در میوه‌های گیلاس در
همین یک از میزان بهبود ارزیابی می‌تواند دار نیست. اگرچه
تورت فرنگی میوه‌های نافرآورا می‌باشد، ولی طی دوره پس از
برداشت، اینال نسبت زاده تولید می‌کند (12). در تورت فرنگی
زردآلو و گیلاس تولید حداکثر اینال میزان مستقل از غلظت‌های
به کار برده شده پوترسین بود و به ترتیب 13 و 20 روز
از شروع انبازداری اتفاق افتاد. در میوه‌های هلوم تولید حداکثر
اینال برای شاهد و نیازمندی/5 و 1 میلی‌مولار پوترسین
5 روز پس از انبازداری و برای سایر تیمارها در روز یک
(پس تأثیر) اتفاق افتاد. (1)
میانگین از تولید اینال بازدارن ویژگی پلی‌امین‌ها را تأیید
می‌کند. در ارقام جهت بافتی گروه‌های میوه‌های قابل
پیش‌تری در تولید فرنگی و اسید مالیک در سه میوه
پنج روز یک بر اندوز‌های مربوط روزی میوه‌ها به شرح
ذیل صورت گرفت:
میزان اینال تولید شده با استفاده از استخوان کرومین‌گراف
گازی مدل 4A (Shimadzu) ساکت شرکت شیمی‌آرای (زاپیان)
و به روش سیستمی به‌شکل شیمی‌ای شده. تعداد 5 میوه از
تعیین حجم و وزن در ظرف سیستمی یک لیتر قرار داده
شدند و بعد از یک ساعت قرار دادن در جریان حرارت اتصال
(35-0) درجه سانتی‌گراد، نمونه گازی داخل ظرف با استفاده
از سوزن دوسر و ظرف خلاء (بومز) ده میلی‌لیتر برداشت
گردید. سی 1 میلی‌لیتر از نمونه غاز توسط سرگن همیانی
از ونوزک پرداخته و به مدت گرام کرومین‌گراف گازی تزریق
شد. میزان اینال تولید شده در زردآلو و هلوم به حساب نانوتایی
در گرم میوه در ساعت (α) (nl g^{-1} h^{-1}) و در ینک فرنگی و گیلاس
(α) (nl kg^{-1} h^{-1}) حساب نانوتایی کیلوگرم میوه در ساعت (α)
گردید.
آزمون سفید باست توئری فرنگی با استفاده از دستگاه
(Hounsfield) سختی نهان مدل KS ساکت شرکت هانفیلد H5
انگلستان و با دو بار نفوذ دادن میله نفوذ کننده با نواک
6/4 mm و در همو انجام شد. در مورد سه میوه دیگر از پنتریوم
فکر سخت 32 سختار شرکت ونگر FDK (Penetrometer)
بتاً با نواک نفوذ کننده 3 mm برای هلوم و گیلاس
(Wagner) 6 mm و 4 روز زردآلو استفاده شد.
برای تعیین میزان کاهش وزن، تعداد 10 عدد میوه برای هر
تیمار در شروع آب‌یابی و نیز طی دوره انبازداری به طور
تصادفی انتخاب و وزن شدند و با توجه به وزن اولیه، درصد
کاهش وزن میوه‌ها محاسبه گردید.
برای سنجش میزان اسیدیت قابل پیش‌تری (Titratable acidity)
میوه‌ها، 10 میلی‌لیتر آب میوه داخل ارلن
(1000 mg L^{-1} HCl) ریخته شد و 5 میلی‌لیتر آب آف طبیعی بدن اسانسی ارده و پس از
اضافه کردن چهار قطره نیتری فلورائنت، با سواد 1/3
ترمال تیتر شد. مقدار اسیدیت قابل پیش‌تری بر حسب درصد اسید آمین غلیق
میوه (آسید سیتریک) در توئری فرنگی و اسید مالیک در سه میوه
زمان 221
شکل 1. تأثیر پوترسین بر تولید اتانول توسط میوه‌های مورد آزمایش

مولدهای شدید (شکل 2). سفینه باید میوه‌های همبستگی مشابه با غلظت‌های تیمار، تیمار پوترسین داشته و بیشترین میزان سفینه میوه مربوط به بالاترین غلظت پوترسین بود. در تیمار برخی اختلافات میانگین بین تیمارهای پوترسین و تیمار خالک و شاهد از نظر سفینه باید میوه معنی‌داری و با اختلاف معنی‌داری بین غلظت‌های مختلف پوترسین از این نظر وجود نداشت.

حفظ با افزایش سفینه باید تحت تأثیر پوترسین در سبکی از میوه‌ها که بوده است. تیمار پیش از برداشت پوترسین بر میوه‌ها یا سفینه باید و افزایش داد و رسیدن آنها را به تأخیر ادامه یافته است. (به تفاوت انداخت). همچنین نقده دادن پیل دریم‌ها به داخل میوه باعث افزایش قوری در سفینه باید و نیز کاهش نرمی شدن میوهی بین 0.5 و 1.5 در ابزار کاهش است.

تأثیر پوترسین بر سفینه باید میوه سفینه باید تمامی میوه‌های لیتلی پاکسپسی که کاهش یافته و تیمار پوترسین به صورت معنی‌داری (P<0.05) باعث حفظ میوه
تأثیر پوئرتسین بر کاهش وزن میوه

با توجه به نتایج این مطالعه، پوئرتسین می‌تواند باعث کاهش وزن میوه جمله‌ای‌یورت، ویتامین C، و آنتی‌اکسیدان‌ها شود. اما تأثیر آن بر pH میوه محدود می‌باشد.

تأثیر پوئرتسین بر سفتی یافته میوه‌های مورد آزمایش

اینکه با مشاهده شاوه‌های 15 و 1 میلی مولار پوئرتسین معنی‌دار بود. لی این نتایج در تأثیر عناصر شاوه‌های 3 و 4 میلی مولار وجود نداشتند. بدبی‌های است کاهش وزن میوه تی و فاکتور دو نارنجی در نتیجه تغییر آب از طرف میوه باشد. همان‌طور که در نتایج (17) زردآلو (5) و انرژی (18) نیز گزارش شده است، پوئرتسین با اتصال به غشاء سطحی باعث پدیداری غش و حفظ و اکسک کوتکول میوه و بدن ترتیب تنش معرض در کاهش نبوده‌ها آب از پوست میوه افرا می‌کند.

نمونه‌های 1 و 15 ابزاری معلولار بود (15/10).
شکل ۳: تأثیر پوترسان بر کاهش وزن میوه‌های مورد آزمایش

شکل ۴: تأثیر پوترسان بر pH میوه‌های مورد آزمایش

۲۴۴
شکل 5. تأثیر پوترسین بر اسیدهای قابل تنفس میوه‌های مورد آزمایش

نتیجه‌گیری

استفاده از پوترسین به میزان قابل توجهی طول عمر پس از برداشت میوه‌های توت‌فرنگی، زردآلو، هل و کیلاس را افزایش داد (جدول 1). طول انبراقی بر اساس ویژگی‌های ظاهری میوه‌ها طی دوره انبراقی برآورد گردید. به نظر می‌رسد پوترسین با کاهش تولید اتیلن، افزایش سهولت باقیماند. کاهش از دست دادن آب از طریق پوست میوه و نیز کند نمودن آهستگی

تأثیر پوترسین بر مواد جامد محلول (میوه (SSC) در طول مدت انبراقی SSF در میوه‌های ناراخگر (نوت- فرنگی و کیلاس) کاهش و در میوه‌های فرازگر (زردآلو و هل) افزایش یافته استفاده از پوترسین به طور معنی‌داری تغییرات
جدول 1. تأثیر پوترسین بر انبارمایی میوه‌های توت‌فرنگی، زردآلو، هلو و گیلاس

<table>
<thead>
<tr>
<th>انبارمانی (روز)</th>
<th>تیمار</th>
<th>توت‌فرنگی</th>
<th>زردآلو</th>
<th>هلو</th>
<th>گیلاس</th>
</tr>
</thead>
<tbody>
<tr>
<td>تیمار خشک</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>نسبت 3</td>
<td>115</td>
<td>141</td>
<td>94</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>نسبت 5</td>
<td>185</td>
<td>141</td>
<td>94</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>نسبت 7</td>
<td>115</td>
<td>141</td>
<td>94</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>نسبت 9</td>
<td>115</td>
<td>141</td>
<td>94</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>نسبت 11</td>
<td>115</td>
<td>141</td>
<td>94</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>نسبت 13</td>
<td>115</td>
<td>141</td>
<td>94</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>نسبت 15</td>
<td>115</td>
<td>141</td>
<td>94</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

پوترسین (میلی مولار):
- نسبت 3: 0/3
- نسبت 5: 0/5
- نسبت 7: 5
- نسبت 9: 1
- نسبت 11: 2
- نسبت 13: 3
- نسبت 15: 4


effects on polyamines, abscisic acid and firmness in Lemons. J. Food Sci. 63(4):611-615.