اثر کاربرد پوترسین بر عمر و فیزیولوژی پس از برداشت
میوهای توت فرنگی، زردآلو، هلو و گیلاس

محمدرضا زکایی خسروشاهی و محمود اثیعی

(تاریخ دریافت: 85/8/14؛ نشر پایین‌ش: 1486/9/30)

چکیده
تأثیر غلظت‌های مختلف پوترسین بر رون زاد بر عمر پس از برداشت میوهای توت فرنگی، زردآلو، هلو و گیلاس هر یک به صورت جداگانه، در قالب طرح‌های کاملاً تصادفی و در سه تکرار مطالعه شد. میوه‌ها در محلول پوترسین به غلظت‌های 0.5، 1، 2 و 3 میلی‌مولار به مدت 30 دقیقه برای توت فرنگی و 72، 120 و 240 دقیقه برای سایر میوه‌ها و نیز آب فشرده (شاهد) فوطه شده و سپس به یکجا نقل گردیدند. طول انبارسازی با کاربرد پوترسین به طور معمولی در تمام میوه‌های انبارش‌پذیر 62.5 درصد رسانیده شد. این ماده تولید ایالین و میزان از دست دادن آب میوه‌ها را کاهش داد و از نرم‌شدن بافت آنها در این‌باریکری، نمود. در طول نگهداری، امکانیابی این‌ها از انرژیکه، اضافه کردن این افزودنی به پس از این‌ها کاهش نمود. با استفاده از پوترسین در روند ذخیره همچنان وجود داشت اما شتاب آنها نشست به شاهد مرکب بود. استفاده از پوترسین مواد جانب محلول را در گیلاس آن‌ها و در سایر میوه‌ها کاهش داد.

واژه‌های کلیدی: توت فرنگی، زردآلو، هلو، گیلاس، پوترسین، عمر پس از برداشت، ایالین

مقدمه
توت فرنگی، زردآلو، هلو و گیلاس از میوه‌های گوشته و آبیار است، با استفاده از آنها می‌توانند هستند و به طور خاص نهایت آب زیاد و سرعت بالای تغییر در درجه پس از برداشت، شدیداً در معرض فاسد بوده و انبارشکنی بسیار کوتاهی دارند. کاهش سرمایه رساند و به تعویق انتخاب مرحله پیش در این قبل میوه‌ها به منظور انبارش‌پذیری آنها بسیار ضروری به نظر می‌رسد. به‌طور کل این مربوط به میوه‌های پلیامینی (Polyamines) که رسیدن میوه را به تأخیر می‌رساند. می‌توان انبارش‌پذیری نیز ویژه‌گری یکی از مشخصات این میوه‌ها را تا حدودی بهبود بخشید (22).

1. به ترتیب دانشجوی سابق کارشناسی ارشد و استادیار علوم پایه‌پذیر فیزیولوژی، دانشکده علوم زیستی، دانشگاه آزاد اسلامی، واحد تهران مرکزی، گروه مصرف‌کنندگان غذایی، دانشگاه آزاد اسلامی، واحد تهران مرکزی، گروه مصرف‌کنندگان غذایی، دانشگاه آزاد اسلامی، واحد تهران مرکزی، گروه مصرف‌کنندگان غذایی

m.esnaashari@basu.ac.ir

* منبع مکانیابی: پست الکترونیکی
مواد و روش‌ها

میوه توت فرنگی (Fragaria ananassa Duch.) رقم سلوا از گلخانه‌های توت فرنگی شرکت هنج و ایلند و میوه زردالا (Prunus armeniaca L.) رقم گیلاس، رقم صورتی "Selva (Prunus persica L.)" رقم صورتی همدان از باغ‌های خصوصی در اطراف همدان به تنهایی کشت شده و آزمایشگاه در حال حاضر کارآمد تر و در مسیر کشت انگیختی شده بود. تیمارها شامل غلظت‌های مختلف پرتسبین‌های (Vitis vinifera) از 1 و 2 میلی‌مول مولکول برای توت فرنگی و 0/5 و 0/1 میلی‌مول برای میوه دیگر و آب حاوی (هسته ای) در مورد توت فرنگی نیز استفاده شد. تیمار خشک (بدون تیمار آب و پرتسبین) نیز استفاده شد. پویترینس در بسته‌بندی صد میلی‌لیتر و با خلخال 90 درصد از تنهایی شد. میوه‌ها در مرحله بلوغ نجایی (هنگامی که به اندازه کامل خود رشد دهند و آماده عرضه به بازار در بودن) با دست برداشت و با بلا فاصله با آزمایشگاه انتقال یافتند. میوه‌های دارای شکل غیرطبیعی و آسیب‌های فیزیولوژی حجم شده و میوه‌های سالم و کنواست بانی‌چهره‌ای گردیدند. تیمار پویترینس از طریق غوتوبر (Norton Vitis) به مدت 5 دقیقه بایر توت فرنگی و 10 دقیقه بایر سه میوه‌های دیگر در محلول‌های از تنهایی شده (با آب مقطع 18 درجه سانتی‌گراد) میوه‌ها پس از اتحاد تیمار، از محلول خارج و در سیلیکا ریتیک شدن تا آن‌ها گرفته شود. پس از 2 دقیقه میوه‌ها که تقریباً خشک شده بودند، به ظرف دو لنگر منتقل و در آنها محکم بسته شدند. درمان در بسته حاوی میوه به یک پسال از 5 درجه سانتی‌گراد برای توت فرنگی و 2 درجه برای سه میوه‌های دیگر میوه گردیدند.

می‌شود (8). هرچه میوه است که به طریق اتصال به اسیدهای فتوی نقش دافعی در گیاه داشته باشد (11)。

عکس‌برداری میوه پت آنها برای بالین برای اولین بار در پرتوتابستان جدایی شده از مولکول برک فولوا مهارده شد (6) میوه است تأثیر فوکبی از تیکه در این میوه همراه باشد، زیرا تونی داده است که پی اساس میوه، برای و مانند از تولید آنزیم‌های ضروری برای استر ایجاد از تولید و جنگل‌یکی می‌کنند (24) ازان in vivo فعالیت این همانندی که انتباریتی آنها به دلیل به تأثیر این پت پری پیشیست از نظر اثرات می‌باشد.

پویترینس پت تولید میوه 15 و 16)

گزارش‌ها حاکی از آن است که پی اساس میوه برده‌دان عمر پس از برداشت و کفیت میوه را از طریق حفظ سفی‌پذیری، کاهش تولید اسید و از دست دادن آب، به تأثیر اندکی این تغییرات رنگ، موارد جامد محلول و اسیدهای قابل تیرپاسیون و نیز محافظه میوه در برای این سرم‌زدایی و صدمات مکانیکی به‌طور می‌بخشند (2). یکی از آثار مهم تیمار برده‌دان پی اساس میوه طی انتباراپازی سیبی و میوه افراز سفی‌پذیری می‌باشد. افزایش سفی‌پذیری و کاهش نرم شدن بلافاصله در پی اسیابی از مهارت‌های غلظت‌های مختلف از طریق محلول‌های 14 (24) توت فرنگی (14).

گزارش میوه (5) لیمون (12 و 18) گزارش شده است. میوه نائل گرداری پی اساس میوه بر سفی‌پذیری میوه دست داده می‌باشد. باز غلظتی این میوه به مکانیکی محدود، موارد جامد محلول و مکانیکی همانندی پی اساس میوه به تیرپاسیون کاهش نرم شدن بلافاصله در پی اسیابی از مهارت‌های غلظت‌های مختلف از طریق محلول‌های 14 (24) توت فرنگی (14).

است: پویترینس از محدودیت‌های اسپرمین (12).

هدف از این پژوهش بررسی تأثیر غلظت‌های مختلف پویترینس میوه پت برای تولید اسید و کاهش وزن عسر پس از برداشت و تغییرات کیفی سفی‌پذیری pH آب، میوه موارد جامد محلول و اسیدهای قابل تیرپاسیون، در چهار میوه مورد آزمایش در خلال انتباراپازی آنها بوده است. باز این منظور از دو میوه فرنگی

۲۰۰
بتچ روی یک بار اندوزه‌گیری های مربوط به روشی می‌تواند بر شرح ذیل صورت گرفت:

میزان اینلی تولید شده با استفاده از دستگاه کرومانتوگراف گازی مدل 4A (Shimadzu) ساخت شرکت شیمیایی (زاپ) C-R و به روش سیستمی بهتر انجام گردید. تعداد 5 میوه از 50 میوه از میوه‌های شبیه یک لیتری قرار داده شدند و بعد از یک ساعت قرار دادن در حرارت اندازه‌گیری صورت گرفت و مقایسه میانگین اثر تیمارها با استفاده از سوزن دوسر و توجه خلا (ونوکی) ده میلیلیتر برداشت گردید. سپس 5 میلیلیتر از میوه‌های توسط سرگن همیشه از ونوزی برشته‌ای و به دستگاه کرومانتوگراف گازی تزریق شد. میزان اینلی تولید شده در زردآلو و هلو به حساب تانولیتر بر گرم میوه در ساعت (nl g⁻¹ h⁻¹) و در توت فرنگی و گیلاس بر حسب تانولیتر بر کیلوگرم میوه در ساعت (nl kg⁻¹ h⁻¹) محاسبه گردید.

آزمون سوئی فاست توت فرنگی با استفاده از دستگاه (Hounsfield) ساخت شرکت هانزفیلد H5 KS سخت شرکت هانزفیلد انگلستان و با در بار نفوذ دادن میله نفود کننده با نوک 6/0 mm ده میوه انجام شد. در مورد سه میوه دیگر از پنترومتر (Penetrometer) ساخت شرکت ونگر FDK مدل 32 ساخت شرکت ونگر (Wagner) ابتدا با تمر نفوذ کننده 3 mm برای هلو و گیلاس و 6 mm برای زردآلو استفاده شد.

برای تعیین میزان کاهش وزن، تعداد 10 عدد میوه برای هر تیمار در شروع آزمایش و نیز 30 روز بعد از انتهای آزمایش به طور تصادفی انتخاب و وزن شدن و با توجه به وزن اولیه، درصد کاهش وزن میوه محاسبه گردید.

برای میزان اسیدیت قابل تیراندازی (Titratable acidity) میوه، 10 میلیلیتر آب میوه داخل ارلن ریخته شد و 5 میلیلیتر آب مقطر بر اساس ارلد سپس از اضافه کردن نفت قلی فلاتهای، با سود 1/10 نرمال تیتر شد. مقدار اسیدیت قابل تیراندازی به حساب رصد اسید آلی غلیب میوه (اسید سیتریک) در توت فرنگی و آسید مالیک در سه میوه…
شکل 1. تأثیر پوتاسیم بر تولید اتانول توسط میوه‌های مورد آزمایش

تولید می‌کند، سطوح تولید اتانول در آن‌ها پایین‌تر است (3). همچنین در گچ‌فرنگی رقم "Liberty"، افت‌وافزایی پوتاسیم طی رسیدن میوه با کاهش تولید اتانول و افزایش اتانولمانی میوه همبستگی دارد (16). تیمار برون‌زایی پی‌ام‌ها با مانع‌سازی فعالیت آنزیم-ACC سینتاز در آوکادو (25) و گلابی (20) و اکسیداز در گچ‌فرنگی (9)، بیوسترات اتانول را به شدت کاهش داده است. گزارش‌ها حاکی از آن است که پی‌ام‌ها با از بین بردن رادیکال‌های آزاد سوی به‌کار گرفته که برای تبدیل به اتانول ضروری هستند. از فعالیت آنزیم-ACC اکسیداز و تولید اتانول مانع می‌کند (1).

تأثیر پوتاسیم بر سطح بافت میوه

سفرت بافت نمایی میوه طی اتانولداری کاهش بافت و تیمار پوتاسیم به صورت میکرو‌داری (P<0/05) باعث حفظ سطح میوه شده است.
تأثیر پوترسین بر سفتی بافت میوه‌های مورد آزمایش

شاخص‌های مرتبط با تیمارهای 5% و 1 میلی‌میلی‌مولار پوترسین معنی‌دار بود، ولی تفاوت معنی‌داری بین تیمارهای 2 و 4 میلی‌میلی‌میلر وجود نداشت. بدیهی است کاهش وزن میوه تیمارهای 2، 4 و 6 در تاریکی (17) زردالو (18) و آلو (18) نیز گزارش شده است. پوترسین با اتصال به غشاء سلولی باعث پیوستگی غشاء و حفظ واکس لایه کوتیکول می‌شود و به ترتیب تنش محسوس در کاهش نبودهای سطح پوست میوه ایفا می‌کند.

انحال به لیبت و پایداری دیواره سلول موجب افزایش کاهش می‌شود که باعث بروز پانیرهای تیمار کاهش انتقال مذکور می‌شود. میزان افزایش تیمار 5% و 1 میلی‌میلی‌میلار پوترسین میزان افزایش سلول کاهش وزن میوه‌ها را به صورت گرفته روبی پلی‌آمین‌ها نشان داد که مقداری قابل توجهی از این ترکیبات توسط سلول‌ها جذب و به دیواره آنها متصول می‌شوند.

تأثیر پوترسین بر کاهش وزن میوه

استفاده از پوترسین به طور معنی‌داری از کاهش وزن میوه‌ها هلو جلوگیری نمود (5/6). شکل 4. در گیلاس تفاوت بین غلظت‌های مختلف پوترسین از لحاظ میزان کاهش وزن فقط در روزهای 10 و 15 انبیادار معنی‌دار بود (5/6). در زردالو

223
شکل 3. تأثیر پوترسین بر کاهش وزن میوه‌های مورد آزمایش

شکل 4. تأثیر پوترسین بر pH میوه‌های مورد آزمایش
شاکل 5: تأثیر پوترسین بر اسیدهای قابل تراسیم بیوهای مورد آزمایش

با کمتر بودن الگه تأثیر پوترسین در کاهش توت فرنگی و هلو به‌طور افزایشی افزایش می‌یابد. از جمله این اسیدهای آلی، حاکم‌ترین دار نیست. از آنجا که اسیدهای آلی به عنوان موسرتر برای واکنش‌های آنزیمی تنفس به کار می‌رود، انتظار می‌رود تا pH دوره پس از برداده اسیدهای بیوه کاهش و مقادیر آن افزایش یابد. استفاده از پوترسین در مریان تنفس بیوه را کاهش داده و از این طریق مصرف اسیدهای آلی را به تأخیر می‌اندازد.

تأثیر پوترسین بر مواد جامد محلول (میوه SSC) در طول مدت بردادری: تأثیر پوترسین در میوه‌های توت فرنگی (نتو- فرنگی) و کاهش در میوه‌های فراغ‌تکنر (زردالو و هلو) افزایش پایدار استفاده از پوترسین به طور معنی‌داری تغییرات...
جدول 1. تأثیر پوترسین بر انبارمانی محلول میوه‌های مورد آزمایش

<table>
<thead>
<tr>
<th>انبارمانی (روز)</th>
<th>تیمار</th>
<th>توت فرنگی</th>
<th>هلول</th>
<th>زردآلو</th>
<th>گلیاس</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
</tr>
<tr>
<td>5</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
<td>0/5</td>
</tr>
<tr>
<td>10</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
</tr>
<tr>
<td>15</td>
<td>0/15</td>
<td>0/15</td>
<td>0/15</td>
<td>0/15</td>
<td>0/15</td>
</tr>
<tr>
<td>20</td>
<td>0/20</td>
<td>0/20</td>
<td>0/20</td>
<td>0/20</td>
<td>0/20</td>
</tr>
<tr>
<td>25</td>
<td>0/25</td>
<td>0/25</td>
<td>0/25</td>
<td>0/25</td>
<td>0/25</td>
</tr>
<tr>
<td>30</td>
<td>0/30</td>
<td>0/30</td>
<td>0/30</td>
<td>0/30</td>
<td>0/30</td>
</tr>
<tr>
<td>40</td>
<td>0/40</td>
<td>0/40</td>
<td>0/40</td>
<td>0/40</td>
<td>0/40</td>
</tr>
<tr>
<td>50</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
</tr>
</tbody>
</table>

شکل 6. تأثیر پوترسین بر مواد جامد محلول میوه‌های مورد آزمایش

*شکل*


effects on polyamines, abscisic acid and firmness in Lemons. J. Food Sci. 63(4):611-615.


