تأثیر نشش کم آبی از دی‌اکسید کربن و اشعه ماورای بنفش بر صفات کیفی

(Triticum turgidum L. var. durum Desf.)

برگ پرچم گندم دوروم ()

حمیدرضا بلوچی، سید علی محمد مدرس ثانوی*، پحی امام* و محسن برزگر۲

چکیده

خشکی، تا بیشتر در محیط دارای افزایش غلظت دی‌اکسید کربن، به‌طور معمول عمده‌محیطی هستند که ایجاد غذاهای پرورشی را تحت تأثیر قرار خواهند داد. این پژوهش در گلخانه تحقیقات دانشگاه از شرایط پایین به مقدار مصرف کلروفیل (UV-A بیش از 250 نانومتر) و UV-B (بیش از 315 نانومتر) داشت. نتایج نشان داد که تأثیر افزایش شدت اشعه ماورای بنفش میزان رنگ‌دانه‌های آنسپاسیان، فلئونین‌ها و کاروتئین‌ها بر بکر گندم دوروم افزایش یافته است. به‌طور معمول، در این مطالعه تأثیر منفی دی‌اکسید کربن و مقدار آب آبی بر میزان آنسپاسیان و کربوهیدرات‌ها مثبت در میزان پروتئین‌های محلول گندم دوروم کاهش نشان داد. نتایج نشان داد که بکری میزان عمده‌محیطی در این پژوهش مربوط به کاهش پرورشی‌های گرد و کاهش حفظات گیاهی در پژوهش باعث ایجاد نشکل‌های افزایش چربی در نسبت میزان کاهش پرورشی‌های محلول گندم خواهد شد.

واژه‌های کلیدی: اشعه ماورای بنفش، دی‌اکسید کربن، نشش خشکی، صفات کیفی، گندم دوروم

مقدمه

نشش آبی و گرمی تأثیر مهم‌ترین نشش‌های باشند که تأثیرگذار بوده و افزایش سطح کاملاً می‌تواند به گونه‌ای کاهش محیطی و سیستم‌های جغرافیایی می‌گردد. کاهش محیطی کلروفیل و همچنین عمق‌پیشین می‌کند که غلظت CO2 جویا در میکرومتر مول هوا را تا اواضف ۳۷۰ به میکرومتر مول هوا را تا اواضف ۳۷۰ به

اسپاگتی و رشته‌های (۷۲) کمبود آب سبب آسیب به

رشد گیاهان و بلاستیدها می‌گردد. کاهش محیطی کلروفیل نیز تحت نشش گرما تشد است (۱۴). محققان پیشین می‌کنند که غلظت CO2 جویا در میکرومتر مول هوا را تا اواضف ۳۷۰ به

۵۰ میکرومتر مول هوا تا اواضف قرن حاضر افزایش یبد

۱) به ترتیب دانشجوی سابقه دکتری و دانشیار زراعت، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران

۲) استاد زراعت و اصلاح گیاهان، دانشکده کشاورزی، دانشگاه شیراز

۳) دانشیار صنایع غذایی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران

* مدلاریا: modaresa@modares.ac.ir

167
به کمک CO2 افزایش یافته فتوسنتز در اکوسیستم‌های خشک یعنی بهبود کیفیت آب غلظه می‌باشد. اهمیت کمتری دارد (25).

تخربی از استراتوافسر به افزایش اعماق کناره در سطح زمین شده است (26). کاهش فتوسنتز و افزایش شگفت ی در فتوسنتز و انتقال الکترون، و خسارت به فتوسنتز II می‌باشد (26). محل‌های هیدف غیاب کننده UV صورت مجهز‌کننده افزایش می‌باشد (27).

سیسفولی، دندان‌های فتوسنتزی به فتوسنتز UV و فتوسنتز UV و ترمیماتی DNA می‌باشد (23). در گونه‌های گیاهی در پاسخ به UV پارامتر مانند دندان‌های فتوسنتزی کاهش یافته و این‌ها ترکیبات گذشتن UV جهت چسبنده UV صورت مجهز‌کننده افزایش می‌باشد (27).

نگاهی به تحقیق بروز افزایش UV افزایش

تعداد UV محتمل

فلاتوئودها و آنتئوئودها برک گیاهان مدرن‌های افرازیونی می‌باشد. کری و همکاران گزارش کردند که این معمایی UV رایسباکو وهکو که گروه کل (به UV می‌باشد (28). آن‌ها همی‌چنین گزارش کردن که کل فتوسنتز UV می‌باشد (28). آن‌ها همی‌چنین گزارش کردن که کل فتوسنتز UV می‌باشد (28). آن‌ها همی‌چنین گزارش کردن که کل فتوسنتز UV می‌باشد (28). آن‌ها همی‌چنین گزارش کردن که کل فتوسنتز UV می‌باشد (28). آن‌ها همی‌چنین گزارش کردن که کل فتوسنتز UV می‌باشد (28). آن‌ها همی‌چنین گزارش کردن که کل فتوسنتز UV می‌باشد (28). آن‌ها همی‌چنین گزارش کردن که کل فتوسنتز UV می‌باشد (28). آن‌ها همی‌چنین گزارش کردن که کل فتوسنتز UV می‌باشد (28). آن‌ها همی‌چنین گزارش کردن که کل فتوسنتز UV می‌باشد (28). آن‌ها همی‌چنین گزارش کردن که کل فتوسنتز UV می‌باشد (28). آن‌ها همی‌چنین گزارش کردن که کل فتوسنتز UV می‌باشد (28).

مورد و روشن

آزمایش در گل‌های تحقیقاتی واقع در دانشکده کشاورزی دانشگاه نبردسر تهران در شرایط کنترل شده دما 25-20 (C) و رطوبت (1/2) با موقعیت
پرداخت و ارزیابی مدل‌ها، دیجی‌سایکل و ایمنی، میزان افزایش و توده‌ای اعمال تیمار در 60 زنده‌مان با توجه به اینکه، میزان افزایش و توده‌ای اعمال تیمار در 60 زنده‌مان با توجه به اینکه، میزان افزایش و توده‌ای اعمال تیمار در 60 زنده‌مان با توجه به اینکه، میزان افزایش و توده‌ای اعمال تیمار در 60 زنده‌مان با توجه به اینکه، میزان افزایش و توده‌ای اعمال تیمار در 60 زنده‌مان با توجه به اینکه، میزان افزایش و توده‌ای اعمال تیمار در 60 زنده‌مان با توجه به اینکه، میزان افزایش و توده‌ای اعمال تیمار در 60 زنده‌مان
جدول 1: آزمون تجزیه خاک مورد آزمایش

<table>
<thead>
<tr>
<th>درصد وزنی رطوبت</th>
<th>ظرفیت رزازی نقطه پورمدگی دائم</th>
<th>نوع بافت</th>
<th>رس سیل (سانتی‌متر)</th>
<th>شن - لوله</th>
<th>عمق نمونه (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/0</td>
<td>12/6</td>
<td>16/4</td>
<td>48</td>
<td>13</td>
<td>20-20</td>
</tr>
<tr>
<td>8/2</td>
<td>14/8</td>
<td>19</td>
<td>16</td>
<td>15</td>
<td>20-20</td>
</tr>
</tbody>
</table>

نکات و بیانک غارش کردن که در گیاهان قاره‌گرده در معرض نمای UV محتمال فلاتونیدها و آنتوسیانین‌های آرایش معیاری بافت (200) تحصیل آنتوسیانین‌ها و دیگر ترکیبات جذب کننده UV FLATونیدها و مجموع دفعه‌ها. بعد از تشکیل UV در گیاهان قاره‌گرده است (23 و 28) که نتایج این پژوهش را مورد تأیید قرار میدهند. ترکیبات فوک ممکن است را برک به عوامل نازک‌ها غشایی عمل کند و UV را قبل از آنکه به اندازه حد محسوس خود از قبل کارولپاسته و دیگر اندازه‌ها برساند. به نظر گرفت که این موارد ناکافی باشد اکثراً منجر به کاهش محتمال کارولپاسته بر گر شده است (7). به عالی تشکیل ترکیبات به‌طور کامل مشخص نشده و ممکن است شاید پیچ فازی فیزیکی جارو برک را داده کنند. با این‌حال غلظت مخصوص شده که سنتر برخی از مشقت‌ها مسیر

نتایج و بحث

تجربه و ارایه صفات گیاهان نشان داد که تشکیل فلاتونیده بر میزان آنتوسیانین، فلاتونیده طول موج‌های 275 و 330 نانوئره، کارولپاسته و a, b, a, b، پروتئین‌های محلول برک کند اثر معنی‌داری (P≤0.01) دارد (جدول 2). کمترین میزان آنتوسیانین در سطح تشکیل A به میزان 98/0 میلی‌مول در گرم وزن محاسبه برک و بیشترین B به مقدار آنتوسیانین‌های مربوط به اشکال مارا و بین پسند در سطح
جدول 2. تجزیه و تحلیل صفات کیفی برگ پرچم گندم دورو مربوط به تنش کم آبی افزایش دی‌اکسید کریم و تشخیص موارد پنف

<table>
<thead>
<tr>
<th>ماده</th>
<th>پروتئین محلول برگ</th>
<th>کاروتئید a+b</th>
<th>فلورونید a</th>
<th>کروموهیدرات های a</th>
<th>آنزیم محلول برگ</th>
<th>درجه</th>
<th>منابع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>ناکام</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>2</td>
<td>*</td>
</tr>
<tr>
<td>ناکام</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>2</td>
<td>*</td>
</tr>
<tr>
<td>ناکام</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>2</td>
<td>*</td>
</tr>
<tr>
<td>ناکام</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>2</td>
<td>*</td>
</tr>
<tr>
<td>ناکام</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>2</td>
<td>*</td>
</tr>
<tr>
<td>ناکام</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>2</td>
<td>*</td>
</tr>
<tr>
<td>ناکام</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>2</td>
<td>*</td>
</tr>
<tr>
<td>ناکام</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>2</td>
<td>*</td>
</tr>
<tr>
<td>ناکام</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>2</td>
<td>*</td>
</tr>
<tr>
<td>ناکام</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>2</td>
<td>*</td>
</tr>
<tr>
<td>ناکام</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>2</td>
<td>*</td>
</tr>
<tr>
<td>ناکام</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>$/0.007^{**}$</td>
<td>2</td>
<td>*</td>
</tr>
</tbody>
</table>

*، **: به ترتیب عدم و یا وجود اختلاف معنادار مبتنی بر سطح احتمال 0.5 و 0.1

ns: ناشی از تصادف.
جدول ۳. مقایسه میانگین برخی از صفات کیفی یک پرچم گندم دوروم تحت تأثیر تیمارهای کمبود آب، افزایش دی‌کسید کربن و اشعه ماورای بنفش

<table>
<thead>
<tr>
<th>کاروتئینید</th>
<th>کاروتئین</th>
<th>فلانونئید</th>
<th>آنتوسیانین</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a+b</td>
<td>a+b</td>
<td>a+b</td>
</tr>
<tr>
<td></td>
<td>میلی گرم در گرم وزنتر برگ</td>
<td>میلی گرم در گرم وزنتر برگ</td>
<td>میلی گرم در گرم وزنتر برگ</td>
</tr>
<tr>
<td>تیمار</td>
<td>(چند در گرم وزنتر برگ)</td>
<td>(چند در گرم وزنتر برگ)</td>
<td>(چند در گرم وزنتر برگ)</td>
</tr>
<tr>
<td>UV-A</td>
<td>0/098⁵</td>
<td>0/087⁵</td>
<td>0/064⁵</td>
</tr>
<tr>
<td>UV-B</td>
<td>0/176⁴</td>
<td>0/168⁴</td>
<td>0/165⁴</td>
</tr>
<tr>
<td>UV-C</td>
<td>0/129⁴</td>
<td>0/126⁴</td>
<td>0/123⁴</td>
</tr>
<tr>
<td>بخش</td>
<td>اشعه ماوراء</td>
<td>دی کسید کربن</td>
<td>کمبود آب</td>
</tr>
<tr>
<td>شکل</td>
<td>400 (ppm)</td>
<td>900 (ppm)</td>
<td>500 (ppm)</td>
</tr>
<tr>
<td>A</td>
<td>1/23⁰</td>
<td>1/22⁰</td>
<td>1/21⁰</td>
</tr>
<tr>
<td>B</td>
<td>0/047⁵</td>
<td>0/047⁵</td>
<td>0/047⁵</td>
</tr>
<tr>
<td>C</td>
<td>0/026⁵</td>
<td>0/026⁵</td>
<td>0/026⁵</td>
</tr>
<tr>
<td>1</td>
<td>0/151²</td>
<td>0/151²</td>
<td>0/151²</td>
</tr>
<tr>
<td>2</td>
<td>0/476⁰</td>
<td>0/476⁰</td>
<td>0/476⁰</td>
</tr>
<tr>
<td>3</td>
<td>0/22⁰</td>
<td>0/22⁰</td>
<td>0/22⁰</td>
</tr>
<tr>
<td>4</td>
<td>0/120⁰</td>
<td>0/120⁰</td>
<td>0/120⁰</td>
</tr>
<tr>
<td>5</td>
<td>0/22⁰</td>
<td>0/22⁰</td>
<td>0/22⁰</td>
</tr>
<tr>
<td>6</td>
<td>0/23⁰</td>
<td>0/23⁰</td>
<td>0/23⁰</td>
</tr>
<tr>
<td>7</td>
<td>0/081⁴</td>
<td>0/081⁴</td>
<td>0/081⁴</td>
</tr>
<tr>
<td>8</td>
<td>0/026⁵</td>
<td>0/026⁵</td>
<td>0/026⁵</td>
</tr>
</tbody>
</table>

اعداد با حروف مشابه در هر ستون بر اساس آزمون دانکن (P≤0/05) اختلاف معنی داری ندارند.
مانند سایر برخی از پژوهش‌های اخیر، در این مقاله نیز می‌تواند اکسیدات و غلات فلفلی به عنوان وسیله‌های مصرفی برای کاهش استرس اجتماعی به‌خاطر اثرات مثبت آن‌ها بر سلامت اجتماعی مورد بررسی قرار گیرد. در این مقاله، بررسی‌هایی در مورد اثرات پزشکی سطح یافته شده است.

در این مقاله، بررسی‌هایی در مورد اثرات پزشکی سطح یافته شده است.
این گزارش تغییر معنی‌داری را در میزان کارفویل و این در سطح تنش (جدول 2). تغییر غلظت گاز دی اکسید کربن از 400 به 90 میکرو بر مول هوا در سطح B میزان کارفویل B گندم دوروم را کاهش داد (جدول 4). کمترین میزان کارفویل B گندم در دوروم در شدت اشعه مارین بی‌نشان و غلظت 400 میکرو مول بر مول هوا در کاهش میزان کارفویل B در کاهش گندم و کارتوئیدهای بگ کندم دورو می‌گردد (جدول 4). محققان هم چنین در بررسی که تنش خشکی نیز باید افزایش سرعت تجزیه کارفویل A عضو (8). سیوس مورد همکاران گزارش دند که اعمال تنش خشکی غلظت کارفویل a به طور متوسط در حدود 75% کاهش b را (8) و هم‌تغییر بین غلظت و زیر رونزهای و می‌گردد در گرند نر می‌باشد (جدول 4). کربلا و همکاران چنین گزارش کردند که کارفویل که سپس و مجموع کارتوئیدهایa و ب ب میزان کارتوئیدهایa و ب تری‌تیو و محلول، قنددهای محلول، نشانه‌ها و ترکیبات جذب گوشی در گیاهان رشد بیانه UV با کمتر بود (13 و 12). کاهش کارتوئیدهای ممکن است در کاهش غلظت کارفویل نقش باید کرد. اگر که کارتوئیدهای کارفویل را از تحریک فتوکیتودینو حفظ می‌کند (24). با یک روزانه، این کاهش ممکن است مکانیسم جهت جلوگیری از جذب اثرات زیادی باشد. اشعه UV ممکن است دفع غلظت فتوانسته را در غلظت‌های بالایی به کاهش می‌دهد (25).

در این مطالعه بیشترین میزان رنگدانه‌ها جذب کندنی تشعشع فرابنفش (آنتوسیانین و فلاؤتوئیده) در سطح تنش و غلظت 400 میکرو بر مول هوا دی اکسیدکربن بود. از افزایش و کاهش شدت تشعشع از سطح میان در بیانه و میکرو doses از افزایش غلظت دی اکسیدکربن و فلاؤتوئیده‌ها را به طور معنی‌داری نسبت به مقدار آنها در سطح کاهش داد (جدول 4). افزایش غلظت دی اکسیدکربن تنش در سطح تنش تشعشع فرابنفش C اثر معنی‌داری بر مقیاس غلظت فلاؤتوئیده‌ها بگ کندم دوروم داشت. در سایر سطوح تنش تغییرات غلظت غلظت دی اکسیدکربن اثر معنی‌دار بود میزان فلاؤتوئیده‌ها نداشت (جدول 4).

اثر مقابل گذشت‌های مختلف تشعشع فرابنفش و تنش

تشکیل اثر معنی‌داری (P ≤ 0.05) بر بیانه آنتوسیانین، کارفویل a و b و کارتوئیدهای و پروتئین های محلول بگ کندم دوروم معنی‌دار بود. این دو عامل یک گونه اثر مقابل گذشت معنی‌داری اثر معنی‌داری را در میزان کارفویل a و b و کارتوئیدهای بگ کندم دوروم نشان داد اما افزایش غلظت کارفویل
تایبین تشکل کم آب، ازدیدی دی-اکسید کربن و اشعه ماورایی پخش بر صفات کیفی

جدول 2: مقایسه میانگین برخی صفات کیفی برگ پرچم از دوروم تحت تأثیر مقدار تیمارهای فلاوونید واکنش دی اکسید کربن و اشعه ماورایی پخش

<table>
<thead>
<tr>
<th>فلاوونید</th>
<th>فلورول</th>
<th>a</th>
<th>كاروتئنید (جدب در غرم و وزن خشک برگ)</th>
<th>نامونتر</th>
<th>نامونتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>میلی کرم در گرم وزنتر برگ</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>6/20 1</td>
<td>1/9 6</td>
<td>1/9 6</td>
<td>2/5 6</td>
<td>1/9 6</td>
<td>1/9 6</td>
</tr>
<tr>
<td>3/7 6</td>
<td>1/9 6</td>
<td>1/9 6</td>
<td>1/9 6</td>
<td>1/9 6</td>
<td>1/9 6</td>
</tr>
<tr>
<td>3/7123 6</td>
<td>1/9 6</td>
<td>1/9 6</td>
<td>2/5 6</td>
<td>1/9 6</td>
<td>1/9 6</td>
</tr>
<tr>
<td>3/7123 6</td>
<td>1/9 6</td>
<td>1/9 6</td>
<td>2/5 6</td>
<td>1/9 6</td>
<td>1/9 6</td>
</tr>
<tr>
<td>3/7123 6</td>
<td>1/9 6</td>
<td>1/9 6</td>
<td>2/5 6</td>
<td>1/9 6</td>
<td>1/9 6</td>
</tr>
</tbody>
</table>

اهنیما دی اکسید کربن و اشعه ماورایی پخش

شراپ میزان فلاونیدها و کربوهیدرات‌ها بر گندم دوروم نداشته (جدول 2). کمترین میزان فلاورول a و b در شدت تشخیص فراشیدen 87/88 و 1/2 میلی گرم در گرم وزن برک گندم و دسته مشاهده شد. در کل از افراشیدen شدت تشخیص فراشیدen و کبود آب آبیاری میزان فلاورول های برگ کاهش معنی‌داری نشان داد. (جدول 5). کمترین میزان انوستوسین برک گندم دوروم در سطح تشخیص فراشیدen و A و شرایط دیدن نتش آب و به میزان 84/9 میلی گرم در گرم وزن خشک برگ مشاهده شد. مقدار انوستوسین برک در سطح تشخیص فراشیدen A یا کبود آب آبیاری افراشیدen معنی‌داری نشان داد. این در حالت است که کاهش یافته (جدول 5).

همچنین شرایط برگ کاروتئنیدهای برگ گندم دوروم بر میزان فلاونیدها و کربوهیدرات‌ها بر گندم دوروم نداشته. در ترکیب دو تیمار خشک و UV به تازگی کاهش روی تمام پارامترهای مطابعه شده نشان داده است. (31). همچنین ترکیبات جذب گندم UV از جمله غلظت فلاورولنید در نش خشک افراشیدن یافت که حدود 26 درصد بیشتر از زمانی بود که بدون خشکی کاهش معنی‌داری 31 یک رابطه بین خشکی و اشعه UV در پایشگاه گیاه وجود دارد. که در بور UV تشکیل یک اثر پاشیدگی اکسیدانی را تحرک می‌کند. آلکسین‌ها UV و مهکرات افراشیدen انوستوسین و فنول‌ها را بعد از تیمار کرایه کردن یک پارامترهای فیزیولوژیکی و بوئیومه‌ای اندازهگیری شده نسبت به تیمار خشکی بیشتر تحت تأثیر UV از آنها که در بور UV کاهش یافته (جدول 5). در نتیجه محیط ذکر شده در تحرک مکانیسم‌های حفاظی اثر تشدید کننده‌های روی هم را در نشان داده. مقدار انوستوسین و فنول‌ها هم فقط با افراشیدen UV یا کاربرد خشک در تیمار افراشیدen یافته.

عمده غلظت ذکر اکسید کربن و مقدار آب آبیاری بر میزان فلاورول a و b کاروتئنیدهای برگ و همچنین میزان فلاورولنیدها در عدده جدید من (5) پس می‌توان چنین تبهدی کرده که به

175
جدول 5 مقایسه میانگین برخی از صفات کیفی برگ چرم در دوروم تحت تأثیر متقابل تیمار‌های افزایش اشعه ماورای بخش و کمیاب آب کاروتئید

| فلوئونید | اشعه ماورای بخش | کمیاب آب
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>میلی‌گرم در گرم وزن-تیر برگ</td>
<td>میلی‌گرم در گرم وزن-تیر برگ</td>
<td>میلی‌گرم در گرم وزن-تیر برگ</td>
</tr>
<tr>
<td>UV-A</td>
<td>0/87</td>
<td>0/112</td>
</tr>
<tr>
<td>UV-B</td>
<td>0/146</td>
<td>0/193</td>
</tr>
<tr>
<td>UV-C</td>
<td>0/159</td>
<td>0/183</td>
</tr>
</tbody>
</table>

اعداد با حروف مشابه در هر سطر بر اساس آزمون دانکن (P ≤ 0/05) اخلاط معنی‌داری ندارند.

تشخیص فرایش میزان کربوهیدرات‌های برگ کاهش بافت‌اما در هر یک از سطوح این تشخیص با افزایش غلظت دی‌اکسیدکربن میزان کربوهیدرات‌های افزایش یافته و تغییر میزان آب آبیاری در اغلب موارد تأثیر زیادی بر میزان کربوهیدرات‌های برگ نداشت. در کل بیشترین میزان کربوهیدرات‌های برگ، در محیط 900 میکرومول بر مول هوا و دی‌اکسیدکربن و شرایط بدون تنش آب بود (جدول 6). در حالی که غلظت دی‌اکسیدکربن و تنش آب میزان کاروتئید a+b و مقدار کربوهیدرات‌ها کاهش می‌یابد. این اثر در غلظت 900 میکرومول بر مول هوا دی‌اکسیدکربن مصرف می‌شود و بدون تنش آب آبیاری اخلاط معنی‌داری بین در تیمار کمیاب آب و بدون تنش آبیاری از نظر میزان کاروتئید a+b و a+b، این غلظت بود.

انواع اثر متقابل عامل سطح مختلف تشخیص فرایش دی‌اکسیدکربن و میزان آب آبیاری بر مقدار کربوهیدرات‌ها فلوئونید (اعداً جدیدی 600 میکرومول)، پروتروپین‌های محلول a+b (P ≤ 0/05) و میزان کاروتئید b (P ≤ 0/05) معنی‌دار بود (جدول 6). در حالی که هیچ‌گونه اثر متقابل معنی‌داری بین سه عامل سطح‌های مختلف بر مقدار اتمسفری آب و کربوهیدرات‌های محلول برگ رونده بعد از عمدی بیا توجه به رقم از حدود 10/1 تا 10/4 روز بعد از عمدی بیا توجه به رقم از حدود 10/1 تا 10/4 بعد از عمدی بیا توجه به رقم از حدود 10/1 تا 10/4 روز بعد از عمدی بیا توجه به رقم از حدود 10/1 تا 10/4.
جدول ۶: مقایسه میانگین صفات کیفی برگ پرچم گندم دوروم تحت تأثیر مناقب تیمارهای افزایشی دی اکسیدکریکین و کمیوبآ

<table>
<thead>
<tr>
<th>دی اکسیدکرین</th>
<th>کمیوبآ</th>
<th>آنپاسین</th>
<th>(جدب در کرم وزن خشک برگ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن خشک برگ</td>
<td>کرم وزنتر</td>
<td>کرم در</td>
<td>نانومتر</td>
</tr>
<tr>
<td>برگ</td>
<td>بیک در</td>
<td>بیک در</td>
<td>بیک در</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>0.78a</td>
<td>0.79b</td>
<td>0.78a</td>
<td>0.79b</td>
</tr>
<tr>
<td>0.77a</td>
<td>0.78b</td>
<td>0.77a</td>
<td>0.78b</td>
</tr>
<tr>
<td>0.76a</td>
<td>0.77b</td>
<td>0.76a</td>
<td>0.77b</td>
</tr>
<tr>
<td>0.75a</td>
<td>0.76b</td>
<td>0.75a</td>
<td>0.76b</td>
</tr>
<tr>
<td>0.74a</td>
<td>0.75b</td>
<td>0.74a</td>
<td>0.75b</td>
</tr>
<tr>
<td>0.73a</td>
<td>0.74b</td>
<td>0.73a</td>
<td>0.74b</td>
</tr>
<tr>
<td>0.72a</td>
<td>0.73b</td>
<td>0.72a</td>
<td>0.73b</td>
</tr>
<tr>
<td>0.71a</td>
<td>0.72b</td>
<td>0.71a</td>
<td>0.72b</td>
</tr>
<tr>
<td>0.70a</td>
<td>0.71b</td>
<td>0.70a</td>
<td>0.71b</td>
</tr>
<tr>
<td>0.69a</td>
<td>0.70b</td>
<td>0.69a</td>
<td>0.70b</td>
</tr>
</tbody>
</table>

جدول ۷: مقایسه میانگین برخی از صفات کیفی برگ پرچم ماکارونی تحت تأثیر مناقب تیمارهای افزایشی دی اکسیدکرین

<table>
<thead>
<tr>
<th>اشاعه ماورایی نفش و کمیوبآ</th>
<th>کروهیدرات جذب در گرم نانومتر در گرم وزن خشک برگ</th>
<th>دی اکسیدکرین</th>
<th>کمیوبآ</th>
<th>مکرومول بلک و خشکی</th>
<th>اشاعه ماورایی نفش و کمیوبآ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>میکروکرم در گرم وزنتر برگ</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>0.78a</td>
<td>0.79b</td>
<td>0.78a</td>
<td>0.79b</td>
<td>0.78a</td>
<td>0.79b</td>
</tr>
<tr>
<td>0.77a</td>
<td>0.78b</td>
<td>0.77a</td>
<td>0.78b</td>
<td>0.77a</td>
<td>0.78b</td>
</tr>
<tr>
<td>0.76a</td>
<td>0.77b</td>
<td>0.76a</td>
<td>0.77b</td>
<td>0.76a</td>
<td>0.77b</td>
</tr>
<tr>
<td>0.75a</td>
<td>0.76b</td>
<td>0.75a</td>
<td>0.76b</td>
<td>0.75a</td>
<td>0.76b</td>
</tr>
<tr>
<td>0.74a</td>
<td>0.75b</td>
<td>0.74a</td>
<td>0.75b</td>
<td>0.74a</td>
<td>0.75b</td>
</tr>
<tr>
<td>0.73a</td>
<td>0.74b</td>
<td>0.73a</td>
<td>0.74b</td>
<td>0.73a</td>
<td>0.74b</td>
</tr>
<tr>
<td>0.72a</td>
<td>0.73b</td>
<td>0.72a</td>
<td>0.73b</td>
<td>0.72a</td>
<td>0.73b</td>
</tr>
<tr>
<td>0.71a</td>
<td>0.72b</td>
<td>0.71a</td>
<td>0.72b</td>
<td>0.71a</td>
<td>0.72b</td>
</tr>
<tr>
<td>0.70a</td>
<td>0.71b</td>
<td>0.70a</td>
<td>0.71b</td>
<td>0.70a</td>
<td>0.71b</td>
</tr>
<tr>
<td>0.69a</td>
<td>0.70b</td>
<td>0.69a</td>
<td>0.70b</td>
<td>0.69a</td>
<td>0.70b</td>
</tr>
</tbody>
</table>

درصد متغیر است و نشان خشکی نیز بسته به رقم ممکن است

۱۷۷
به کربوهیدرات‌های محلول در تنظیم امسیری برگ است.

 تصیبی و همکاران گزارش کردند که میزان قند‌های احیا UV-A, B, C کمتر از تهیه‌کننده 16/53 و 47 درصد نسبت به کنترل کاهش نشان می‌دهد (4). کاهش میزان قند‌های احیا کندنه در تهیه‌کننده شاخصی UV است که کاهش فتوسترز را نشان می‌دهد و این کاهش فتوسترز به دلایل مختلفی می‌باشد. گزارش شده است که شناختی تهیه‌کننده باعث ایجاد خشکی UV بر شاخصی تحت تأثیر رادیکال‌های آرآکسید ناشی از تنش UV قرار گرفته و اکسیدسیون می‌شوند و به روش‌های هم‌گرایی غشایی در تهیه‌کننده محلول شده که فتوسترز و تولید انرژی را با UV مشکل می‌نماید. از آنجا که گیاهان تهیه شده با UV تعمیل می‌شوند که کاهش داده می‌شود و این کاهش UV کاهش فتوسترز که کاهش میزان قند‌های احیا کندنه را در پی دارد (16).

آینورس و همکاران گزارش کردند که افرادی به CO2 مح dataArray کربوهیدرات‌های محلول را 90 درصد، مححوا نشان می‌نماید که 20 درصد و محdataArray کربوهیدرات‌های غیر محلول را 120 درصد بطور معمولی افزایش داده است (6). تسانوین و همکاران گزارش کردند که فلک‌هایی به درجه UV محدار (70 درصد) UV محدار محdataArray کربوهیدرات‌های کلی از افراد (100 درصد) و با افزایش UV (25 درصد) محدار UV (70 درصد) افزایش پایه (27). در مجموع CO2 افزایش UV الکترات UV یک یا CO2 از CO2 تهیه‌کننده برگ (در سطح جلبم 270 نانومتر) بیشتر تحت تأثیر اشعه مولیروفت بوده، به طوری که بیشتری می‌باشد. بیشتر UV افزایش تهیه‌کننده در سطح تهیه‌کننده UV گاز بیشتری می‌شود و بین خشکی UV مختلفی که در UV و UV محدار محدار محدار UV این است اشعه UV می‌باشد. افزایش UV تهیه‌کننده و این اشعه D2 و D1 باعث ترکیب برونتین‌ها و میکروکس شکست آب 2178

Downloaded from shahr.iut.ac.ir at 14:57 IRDT on Friday September 4th 2020
می‌شود (۲۳). رنگ‌هایی فتوسنتزی موجود در این بافت‌ها به‌دلیل وجود رادیوکالی‌های آزاد اکسیژن فتواسیده شده و محصول آنها کاهش می‌یابد (۲۴). آنزیم کلیدی رایپسکو نیز که جزء آنزیم‌های کلیدی در جرخه کلیوئین است به اشعه UV بسیار حساس است و تحت تأثیر آن تخریب می‌شود.

همچنین بطور معمول گزارش کرده‌اند که غلظت نیتروژن در گیاهان رشد بیانگی در CO2 زیاد کاهش می‌یابد (۲۵). سینکلایر و همکاران گزارش کرده‌اند که گیاه در سرتابحال فصل رشد در شرایط CO2 بالا کمتر و غلظت نیتروژن بزرگ داشت (۲۶). لکین و همکاران گزارش کرده‌اند که کارایی کربوکسیلاته رایپسکو و ریبوئوز دیفسات اکسیژنی و ظرفیت تولید مجدد رایپسکو در گیاهان سه کربن به‌دست آمده.

منابع مورد استفاده

۱. آمام، ح. ۳۸۲۷. رعایت شدید. انتشارات دانشگاه شیراز.

