اثر جهت و تراکم‌های مختلف کاشت بر عملکرد علفه و دانه سورگوم علفی در برخی بهترین نواحی کشاورزی و منابع طبیعی سال دوازدهم / شماره چهل و نیم (الف) / پاییز 1387

سید مهدی ناصر علیه و محدثه سهیل‌الدین سعید

(تاریخ دریافت: 18/5/1383، تاریخ پذیرش: 14/8/1384)

چکیده

متغیرهای اثر تراکم کاشت و جهت کاشت بر رشد رویشی و عملکرد دانه سورگوم علفی، واریاتی در سال 1381 در روستای حسن‌آباد شه تا کل رقم در 90 کیلومتری جنوب شرقی تیم در استان کرمان انجام گردید. انوازی به صورت 50 ردیف در قالب طرح سلول‌های کامل نزاری با همسر اجرای اجرایی. ناتورالهی مورد مطالعه شامل جهت کاشت (شمالی جنوبی، شمال غربی و شمال شرقی جنوب غربی) و تراکم کاشت (100، 110 و 120 هزار بوت در هکتار) بود. نتایج به دست آمده از تجربه واریانس داده‌های تشان داد که جهت کاشت آتی متین داری بر عملکرد دانه، وزن هزار دانه، تعداد پنجه، عملکرد علفه (ماده خشک) و ارتقاء ساقه با افزایش تراکم افزایش یافته. با توجه به نتایج بدست آمده بهترین تراکم‌های کاشت برای حصول حداکثر عملکرد علفه و دانه در سورگوم در منطقه به ترتیب 110 و 70 هزار بوت در هکتار و بهترین جهت کاشت جهت شمالی- جنوبی می‌باشد.

واژه‌های کلیدی: تراکم، جهت کاشت، عملکرد دانه، علفه، سورگوم

مقدمه

سورگوم میان مناطق گمبرسی خشک و نیمه‌مляр خشک جبی به روی، دومین برادر و مادا غازی عامل محدود کننده تولید هستند ولی شنوش‌نگیزی زیاد است سازگاری دارد (24). در این مناطق می‌توان از استفاده بهینه از تور روش آسیبی از طریق انتخاب تراکم و جهت مناسب کشاورزی‌ای بررسی بود. این روش کلی یکی از فاصله‌های آن تراکم‌هایی که بهترین پایام‌های نتیجه‌گیری‌های یافته‌ها و فاصله ای باید یا تراکم‌هایی که بستگی به رقم

حاصل خبری خاک، میزان رطوبت و طول فصل رشد دارد (2).

تراکم کاشت توانسورگوم معمولی پایین است (کمتر از 10000 بوت در هکتار) در عین حال عملکرد دانه سورگوم نسبت به افزایش تراکم، عکس العمل تولید می‌کند. گزارش‌های نهایی در تراکم کم در جهان سورگوم مقدار پر شدن نداشته و به سخت افزایش خواهد شده در تراکم زیاد که مقدار پر شدن دانه از قاعده تا نوک خوشه‌های افزایش می‌یابد و در قسمت‌های پایین خوشه‌ها در بین پر شدن دانه از قسمت‌های بالایی سورگوم و علفه با توجه به ترتیب (2) به ترتیب مربی و دانشجویان کارشناسی ارشد زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شهید بهشتی کرمان‌...

snaseralavi@yahoo.com

*: مسئول مکاتبات، پست الکترونیکی: snaseralavi@yahoo.com
طوانی نت‌های است (۲۴). مطبوع و همکاران (۶) گزارش کردن که یا افزایش تراکم وزن هزار دانه کاهش یافته، هنگامی که همکاران (۷) معتقدند که اکثراً علت کاهش وزن هزار دانه و افزایش تراکم بلند فاصله‌بندی را یافته‌اند، تحقیق عملکرد و مواد غذایی می‌باشد. ولی سایر و آیا (۲۳) اکثر تراکم‌های مختلف که را یافته‌اکس مطمئننده می‌دانند که ارجاع به فاصله‌بندی و تحقیق نهایی که به‌طور خلاصه در نت‌های افزایش تراکم افزایش یافته و تراکم‌ها و اثر مقابل تراکم و رده تأثیر معناداری را روي عامل و افزایش

عملکرد نداشته‌اند.

پنج‌زین ایجاد شاخه‌های جانی یک مکانیزم جامی مهم

در عملکرد علوم تولیدی تعادلی از غلات از جمله سورگوم می‌باشد (۱۹ و ۲۲) در تراکم که پنج‌زین تحریک می‌شود در حالی که در تراکم زاید پنج‌زین محدود می‌گردد (۲). در این رابطه ماسالاکا و نتاکو (۱۸) ملاحظاتی (۵) و کاروان (۱۱) گزارش کردن که افزایش تراکم بیشتر به پهلوی معناداری موجب کاهش پنج‌زین می‌گردد.

بررسی اثر عوامل مختلف بر ارتقاء و قطر سطح گیاه

سورگوم علوم‌های به نقبل ارتقاء این دو عامل با عملکرد ساختار در هنگام عملکرد ساختار خشک از اهمیت خاصی برخوردار است. نتایج منطقی در مورد اثر تراکم روی ارتقاء گیاه وجود دارد. ملاحظاتی (۵) گزارش نموده که با افزایش تراکم بیشتر افزایش ارتقاء کاهش یافته و آنها علت کاهش ارتقاء با افزایش تراکم را محدود می‌کنند. همچنین کاروان و همکاران (۱۱) گزارش کردن که افزایش گیاه با افزایش فاصله رویه رابطه کاهش رفتار دسترسی به سورگوم با افزایش تراکم کاهش می‌یابد که اکثراً به‌دلیل

مواد و روش‌ها

آزمایشی در سال ۱۳۸۱ در روستای حسن آباد شهید کل واقع در ۹۵ کیلومتری جنوب شهرستان بن با طول جغرافیایی ۵۸ درجه و ۲۴ دقیقه شرقی و عرض جغرافیایی ۲۹ درجه و ۶ دقیقه شمال با ۱۰۵ متر ارتفاع از سطح دریا واقع در منطقه گرم و شکل دارد. تحقیق به متوسط یک دامنه ۳۵ میلی‌تر در سال و میانگین رقابت برند بود. آزمایشی در سال ۱۳۸۱ در روستای حسن آباد شهید کل واقع در ۹۵ کیلومتری جنوب شهرستان بن با طول جغرافیایی ۵۸ درجه و ۲۴ دقیقه شرقی و عرض جغرافیایی ۲۹ درجه و ۶ دقیقه شمال با ۱۰۵ متر ارتفاع از سطح دریا واقع در منطقه گرم و شکل دارد. تحقیق به متوسط یک دامنه ۳۵ میلی‌تر در سال و میانگین

 vz
تایپ و بیان

نتایج تجزیه واریانس داده‌ها نشان داد که اثر جهت کاستن روز افتراق گیاه در سطح احتمال پنگ درصد انجام شد.

جفت شریفی - قربان سبب به این جفت ها بالاترین اثبات و جفت دیالوگی - چندین هم اثرگذار نفوذ نور به داخل جامعه گیاه است (جدول 2).

از همکاری ارتقاء در سیستم کاوش نفوذ نور به ظرف مولتی یا در جهت افزایش تمایل سنبلی در خلاه دوره رشد روییان و توجه کاوش و استیل نسبت به رفته‌های شریفی - قربان خرد (9) لازم به جهت شریفی - چنین ارتقاء ساقه کمتر از سایر جهات است.

اثر تراکم بر ارتقا گیاه در سطح احتمال درصد معنی‌دار بود (جدول 1). روند تغییرات ارتقاء با افزایش تراکم بین صورتی بود که با افزایش تراکم ارتقاء گیاه به افزایش یافته و حداکثر ارتقاء در تراکم 1000 هزار بونه و کمتر. من در تراکم 500 هزار بونه مشاهده گردید (جدول 3). که دلیل آن را می‌توان افزایش قابل بر سرور در تراکم ذکر کرد که این به توجه به ظرفیت کارآتک و همکار (11) مطالعه‌داده انتها با اثرهای سرمناکی و کوچکی (3) کفیت و کمیت نور نیز طول و باریک شدن ساقه اثر می‌گذارد.

اثرات متقابل بین جهت و تراکم، توانست باعث به وجود آمد اختلاف معنی‌داری در این صنف کرده (جدول 1). نتایج حاصل از تجزیه واریانس داده‌ها حاکی از معنی‌دار شدن اثر جهت بر قطر ساقه در سطح احتمال پنگ درصد بود (جدول 1).

مقایسه بیانگیان قطر ساقه در جهتهای مختلف نشان داد که جهت شماری - جنوبی بهترین و جهت شریفی - قربانی کمترین

جنگل‌های و حداکثر حرارت به ترتیب 43 و 29 درجه سانتی گراد به صورت فاکتور در قالب طرح بلوک‌کدهای کامل تصادفی با 36 نکردار اجرا گردید. تیمارهای آزمایش شامل ترکیبی از جهت کاستن (شمالی-جنوبی)، شریفی - قربان (SN)، جنوبی - جنوبی و جنوبی - شمالی و (SE) و تراکم (50، 100 و 150 کیلوگرم در هر کار). هر کرت شامل پنج نقطه شمالی شده که به واحد 9 متر بر جهت کشت از پنجم سوراخون و انتهای اسپیدی به وزن هزار دانه 300 استفاده شد. کشت 24 روزه در بهره خوشه کاری و با دست روی رفته‌هایی که جهت آنها توسط قطر من مشخص گردید و به صورت سه بار در هر تاریخ به دوره 310 و 420 تایک رفت. نتایج نشان داد که جهت افزایش کارکرد این جفت بیش از هر دیگر برای این انگیزه نیز استفاده. به طور گذشته در هر واحد آزمایشی شامل نمره سنجشی سطح میانی با رعایت حساسیت بود که از برای دادن کارکرد، نکته کارکرد و بار انجام شد. از گروه‌کش‌های شبیه‌سازی و آنتانا نیز استفاده شده. سطح برداشت نهایی در هر واحد آزمایشی شامل نمره سنجشی سطح میانی با رعایت حساسیت بود که از برای دادن کارکرد، نکته کارکرد و بار انجام شد. از گروه‌کش‌های شبیه‌سازی و آنتانا نیز استفاده شده. سطح برداشت نهایی در هر واحد آزمایشی شامل نمره سنجشی سطح میانی با رعایت حساسیت بود که از برای دادن کارکرد، نکته کارکرد و بار انجام شد. از گروه‌کش‌های شبیه‌سازی و آنتانا نیز استفاده شده. سطح برداشت نهایی در هر واحد آزمایشی شامل نمره سنجشی S

93
جدول 1. تجزیه واریانس عملکرد دانه (کیلوگرم در هکتار)، وزن هزار دانه (گرم)، تعداد پنجه، وزن خشک کل (کیلوگرم در هکتار)، ارتفاع ساقه (سانتیمتر) و قطر ساقه (میلی‌متر)

<table>
<thead>
<tr>
<th>تندهای مختلف</th>
<th>ارتفاع ساقه</th>
<th>قطر ساقه</th>
<th>وزن خشک کل</th>
<th>وزن هزار دانه</th>
<th>تعداد پنجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>بلوک 1</td>
<td>5/241 ns</td>
<td>3/95 ns</td>
<td>1299/241</td>
<td>8/61</td>
<td>5/241 ns</td>
</tr>
<tr>
<td>تراکم 1</td>
<td>12/96 **</td>
<td>6/39 **</td>
<td>2419/96</td>
<td>27/03</td>
<td>114/237 **</td>
</tr>
<tr>
<td>جهت 1</td>
<td>20/01 ns</td>
<td>4/34 ns</td>
<td>2410/29</td>
<td>12/15</td>
<td>14/240 **</td>
</tr>
<tr>
<td>تراکم×جهت 1</td>
<td>27/29/39 **</td>
<td>8/11 **</td>
<td>2412/29</td>
<td>12/25</td>
<td>114/212 **</td>
</tr>
</tbody>
</table>

جدول 2. مقایسه میانگین ارتفاع ساقه، قطر ساقه، تعداد پنجه، وزن خشک، وزن هزار دانه و عملکرد دانه در جهات مختلف کاشت

<table>
<thead>
<tr>
<th>جهت، تعداد، وزن خشک، وزن هزار دانه و عملکرد دانه</th>
<th>ارتفاع ساقه</th>
<th>قطر ساقه</th>
<th>تراکم بوته</th>
</tr>
</thead>
<tbody>
<tr>
<td>شمالی - جنوبی</td>
<td>186/19 °</td>
<td>40/52 °</td>
<td>50000</td>
</tr>
<tr>
<td>شرقی - غربی</td>
<td>194/08 °</td>
<td>38/67 °</td>
<td>70000</td>
</tr>
<tr>
<td>شمال شرقی - جنوب غربی</td>
<td>189/58 °</td>
<td>39/58 °</td>
<td>90000</td>
</tr>
</tbody>
</table>

جدول 3. مقایسه میانگین ارتفاع ساقه، قطر ساقه، تعداد پنجه، وزن خشک، وزن هزار دانه و عملکرد دانه در تراکم‌های مختلف کاشت

<table>
<thead>
<tr>
<th>تراکم، وزن خشک، وزن هزار دانه و عملکرد دانه</th>
<th>ارتفاع ساقه</th>
<th>قطر ساقه</th>
<th>تراکم بوته</th>
</tr>
</thead>
<tbody>
<tr>
<td>تراکم 1</td>
<td>43/78 °</td>
<td>37/87 °</td>
<td>50000</td>
</tr>
<tr>
<td>تراکم 2</td>
<td>41/11 °</td>
<td>38/78 °</td>
<td>70000</td>
</tr>
<tr>
<td>تراکم 3</td>
<td>36/3 °</td>
<td>36/3 °</td>
<td>90000</td>
</tr>
</tbody>
</table>

* به ترتیب معنادار در سطح 0.01 و 0.05 ns **

کاهش قطر ساقه با افزایش تراکم اختلال به دلیل رقابت بر سر رطوبت و عناصر غذایی و به‌خصوص کمیت و کیفیت نور فضواره دخالت جامعه کیاهی می‌باشد. کاهش قطر ساقه در اثر افزایش تراکم توسط کاراوان و همکاران (11) برگر و همکاران (10) و بیانو و همکاران (25) نیز گزارش شده است. اثرات متقابل معنی‌دار بین جهت و تراکم بر قطر ساقه دیده نشد.
اثر جهت و تراکم‌های مختلف کاشت بر عملکرد علوفه و دانه سورگوم علفی در بیم

بیشتر، ارتقاء کوانتور و سطح ضخیم تاریخ و همچنین با مشاهدات ملایمی (5) مطلوبت دارد.
عملکرد ماده خشک در گیاه سورگوم یک گیاهی به مصرف علوفه‌ای می‌باشد. خازن این است. به‌علاوه عملکرد کل ماده خشک تبعیج کارایی یک گیاهی گیاهی زراعی از نظر استفاده از تشکیل نور خورشید در طول فصل رشد است. تجربه اورانس داده‌ها نشان داد عملکرد ماده خشک در جهت‌های مختلف در سطح منحنی دار بود (جدول 1). جهت شماالی- جنوبی بالاترین عملکرد و جهت شرقی- غربی حداقل عملکرد را دارا بودند (جدول 2). دلیل عملکرد بالاتری ماده خشک در جهت شماالی- جنوبی تولید نشان می‌دهد و سطح قطعات و همچنین جذب نور خورشید و فتوسنتز بالاتری می‌باشد که با نتایج کلی (28 و 17), گروه‌های آدنیوم (16), دانکن و همکاران (12) و آدنیوم (8) مطابقت دارد.

اختلاف عملکرد ماده خشک در تراکم‌های مختلف در سطح احتمال به درصد معنی‌دار بود (جدول 1). با این‌الوان تراکم عملکرد ماده خشک افزایش یافته بگونه‌ای که عملکرد ماده خشک در تراکم 110 هزار بوته حداکثر و با تراکم 5 هزار بوته حداقل بود. همچنین تراکم 50 هزار بوته و تراکم 110 هزار آشکار شد که با افزایش تراکم بوته، تعداد پنجه در بوته کاهش یافته بود (جدول 3) که احتمالاً مختلف رقابت بین قبایل طیاف و مواد غذایی و رطوبت می‌باشد که کاروان و همکاران (111), ملایمی (5) و ماسواسکاتاکانو (18) نیز به نتایج مشابه درست پایین است. انتقال بین جهت و تراکم در مورد این صفت معنی‌دار نبود (جدول 4).

ارتفاع گیاه و تعداد پنجه در بوته هم‌سنجشی معنی‌دار نبود (جدول 5) با هم‌دشانته که علت آن این است که با افزایش تراکم ارتفاع گیاه افزایش معنی‌دار دارد و تعداد پنجه در بوته کاهش نشان داد. هم‌چنین در تراکم باعث به وجود آمدن هم‌سنجشی بین ارتفاع و تعداد پنجه شد. که با نتایج پندیدن (انقباس 7), که گزارش کرد تیمارهای تحت تأثیر نور انعکاسی تعداد پنجه
حذف مقدار خود بود (جدول 2). در حالاتی که فرموله مالکیتی وزن یک دارنده در معیاری به مبادله آرامی یا برگ هوا به این معیار تأثیر زیادی دارد و می‌تواند وزن وزاری داشته و در سری یک دارنده می‌تواند پرده‌های ورودی افتاده با سبب‌های بین گذرگاه و ریسیدن تعیین می‌شود. این آرایه‌ای به‌نوع خود به‌طور درجه‌بندی مالکیتی موضوع جدید به‌طور مؤثر مقررات مالکیتی ملی و استیلیه‌ی فیزیولوژی‌ی علائم و همچنین روایت مبدا و مقصود واسته (1).

همچنین در این آزمایش اثر تراکم بر وزن هزار دانه در سطح یک درصد معیاری گسترش که دلیل آن کاهش نفوذ تور و رقابت خوش‌خواهی با یکنون بیشتر توضیح‌گری و در زمانی که در این آزمایش تراکم معیاری معنی‌دار وزن هزار دانه با تراکم ۷۰ هزار به‌طور معنی‌دار دانه با تراکم ۱۱۰ هزار مشاهده گردیده (جدول ۳) که اثر توانایی فنی و همکاران (۱۳) این آزمایش بود. از آنجا که جذب نور خورشیدی مالکیت خود بازدهی کاهش CMPAR و حداقل نفوذ و نفوذ ضعیف در داخل جامعه گیاهی با می‌باشد و همچنین مالکیت محور خطرناک تراکم مالکیتی بیشتر در این آزمایش تراکم حداقل معکوس دانه در تراکم ۷۰ هزار به‌طور معنی‌دار دانه با تراکم ۱۱۰ هزار مشاهده گردیده قابلیت CMPAR و حداقل نفوذ و نفوذ ضعیف در داخل جامعه گیاهی با می‌باشد و همچنین مالکیت محور خطرناک تراکم مالکیتی بیشتر در این آزمایش تراکم حداقل معکوس دانه در تراکم ۷۰ هزار به‌طور معنی‌دار دانه با تراکم ۱۱۰ هزار مشاهده گردیده قابلیت CMPAR و حداقل نفوذ و نفوذ ضعیف در داخل جامعه گیاهی با می‌باشد و همچنین مالکیت محور خطرناک تراکم مالکیتی بیشتر در این آزمایش تراکم حداقل معکوس دانه در تراکم ۷۰ هزار به‌طور معنی‌دار دانه با تراکم ۱۱۰ هزار مشاهده گردیده قابلیت CMPAR و حداقل نفوذ و نفوذ ضعیف در داخل جامعه گیاهی با می‌باشد و همچنین مالکیت محور خطرناک تراکم مالکیتی بیشتر در این آزمایش تراکم حداقل معکوس دانه در تراکم ۷۰ هزار به‌طور معنی‌دار دانه با تراکم ۱۱۰ هزار مشاهده گردیده قابلیت CMPAR و حداقل نفوذ و نفوذ ضعیف در داخل جامعه گیاهی با می‌باشد و همچنین مالکیت محور خطرناک تراکم مالکیتی بیشتر در این آزمایش تراکم حداقل معکوس دانه در تراکم ۷۰ هزار به‌طور معنی‌دار دانه با تراکم ۱۱۰ هزار مشاهده گردیده قابلیت CMPAR و حداقل نفوذ و نفوذ ضعیف در داخل جامعه گیاهی با می‌باشد و همچنین مالکیت محور خطرناک تراکم مالکیتی بیشتر در این آزمایش تراکم حداقل معکوس دانه در تراکم ۷۰ هزار به‌طور معنی‌دار دانه با تراکم ۱۱۰ هزار مشاهده گردیده قابلیت CMPAR و حداقل نفوذ و نفوذ ضعیف در داخل جامعه گیاهی با می‌باشد و همچنین مالکیت محور خطرناک تراکم مالکیتی بیشتر در این آزمایش تراکم حداقل معکوس دانه در تراکم ۷۰ هزار به‌طور معنی‌دار دانه با تراکم ۱۱۰ هزار مشاهده گردیده قابلیت CMPAR و حداقل نفوذ و نفوذ ضعیف در داخل جامعه گیاهی با می‌باشد و همچنین مالکیت محور خطرناک تراکم مالکیتی بیشتر در این آزمایش تراکم حداقل معکوس دانه در تراکم ۷۰ هزار به‌طور معنی‌دار دانه با تراکم ۱۱۰ هزار مشاهده گردیده قابلیت CMPAR و حداقل نفوذ و نفوذ ضعیف در داخل جامعه گیاهی با می‌باشد و همچنین مالکیت محور خطرناک تراکم مالکیتی بیشتر در این آزمایش تراکم حداقل معکوس دانه در تراکم ۷۰ هزار به‌طور معنی‌دار دانه با تراکم ۱۱۰ هزار مشاهده گردیده قابلیت CMPAR و حداقل نفوذ و نفوذ ضعیف در داخل جامعه گیاهی با می‌باشد و همچنین مالکیت محور خطرناک تراکم مالکیتی بیشتر در این آزمایش تراکم حداقل معکوس دانه در تراکم ۷۰ هزار به‌طور معنی‌دار دانه با تراکم ۱۱۰ هزار مشاهده گردیده قابلیت CMPAR و حداقل نفوذ و نفوذ ضعیف در داخل جامعه گیاهی با می‌باشد و همچنین مالکیت محور خطرناک تراکم مالکیتی بیشتر در این آزمایش تراکم حداقل معکوس دانه در تراکم ۷۰ هزار به‌طور معنی‌دار دانه با تراکم ۱۱۰ هزار مشاهده گردیده قابلیت CMPAR و حداقل نفوذ و نفوذ ضعیف در داخل جامعه گیاهی با می‌باشد و همچنین مالکیت محور خطرناک تراکم مالکیتی بیشتر در این آزمایش تراکم حداقل معکوس دانه در تراکم ۷۰ هزار به‌طور معنی‌دار دانه با تراکم ۱۱۰ هزار مشاهده گردیده قابلیت CMPAR و حداقل نفوذ و نفوذ ضعیف در داخل جامعه گیاهی با می‌باشد و همچنین مالکیت محور خطرناک تراکم مالکیتی بیشتر در این آزمایش تراکم حداقل معکوس دانه در تراکم ۷۰ هزار به‌طور معنی‌دار دانه با تراکم ۱۱۰ هزار مشاهده گردیده قابلیت CMPAR و حداقل نفوذ و نفوذ ضعیف در داخل جامعه گیاهی با می‌باشد و همچنین مالکیت محور خطرناک تراکم مالکیتی بیشتر در این آزمایش تراکم حداقل معکوس دانه در تراکم ۷۰ هزار به‌طور معنی‌دار دانه با تراکم ۱۱۰ هزار مشاهده گردیده قابلیت CMPAR و حداقل نفوذ و نفوذ ضعیف در داخل جامعه گیاهی با می‌باشد و همچنین مالکیت محور خطرناک تراکم مالکیتی بیشتر در این آزمایش تراکم حداقل معکوس دانه در تراکم ۷۰ هزار به‌طور معنی‌دار دانه با تراکم ۱۱۰ هزار مشاهده گردیده قابلیت CMPAR و حداقل نفوذ و نفوذ ضعیف در داخل جامعه گیاهی با می‌باشد و همچنین مالکیت محور خطرناک تراکم مالکیتی بیشتر در این آزمایش تراکم حداقل معکوس دانه در تراکم ۷۰ هزار به‌طور معنی‌دار دانه با تراکم ۱۱۰ هزار مشاهده گردیده قابلیت CMPAR و حداقل نفوذ و نفوذ ضعیف در داخل جامعه گیاهی با می‌باشد و همچنین مالکیت محور خطرناک تراکم مالکیتی بیشتر در این آزمایش تراکم حداقل معکوس دانه در تراکم ۷۰ هزار به‌طور معنی‌دار دانه با تراکم ۱۱۰ هزار مشاهده گردیده C
منابع مورد استفاده

4. کوچکی، ع. و. ج. خلفانی. انتشارات سلیقه ترجمه. محصولات زراعی (ترجمه) انتشارات دانشگاه فردوسی مشهد.
5. مالاپلاکی، ع. 1966. بررسی اثر تراکم و تبیک بر عملکرد و بعضی از خواص کیفی گیاه‌های کشاورزی. پایان‌نامه کارشناسی ارشد زراعت، دانشکده کشاورزی، دانشگاه تهران.
6. مطیعی، ا. و. رکنی، ع. سبادت. 1976. تأثیر تاریخ کاشت و تراکم در نسبت 76 روی عملکرد دانه در منطقه خوزستان.