بررسی اثر عوامل اقلیمی بر گسترش دمنه کوهی و درمتن دشتی در استان اصفهان

با استفاده از روش‌های آماری چند متغیره

لیلا یغمایی، سید سلطانی کوپانی و مرتضی خداقی

(تاریخ دریافت: 86/2/26، تاریخ پذیرش: 86/3/7)

چکیده

به منظور بررسی تأثیر عوامل اقلیمی بر گسترش گونه‌های دمنه کوهی و درمتن دشتی در استان اصفهان، 39 متغیر اقلیمی که از نظر شرايط اکولوجیکی این دو گونه از اهمیت بیشتری برخوردار بودند، انتخاب و با روش تحلیل عامی عوامل مؤثر در پراکنش این دو گونه بررسی گردید. این ۲۳ گونه در ۳۱ ذیل از تغییرات را به خوی اختصاص داده‌اند. انتزاعات عمیق و متغیرهای اولیه در هر یک از تیپ‌های غالب روی دمنه کوهی و دشتی در استان شامل، درمتن کوهی و گونه. درمتن دشتی به‌صورت یک‌دست، درمتن دشتی به‌عنوان گونه غالب و درمتن دشتی به‌عنوان گونه همره، با وجود فاوت نهایی تأثیر هر یک از سه عامل بارش، دما و تابش و نیز متغیرهای اولیه اقلیمی بر تیپ‌های روی دمنه کوهی و دشتی مشخص گردید. همین‌گونه تنها متغیر ارتقاء پراکنش در هر یک از چهار تیپ مورد تجزیه و تحلیل قرار گرفت. نتایج نشان داد که عامل بارش، مهم‌ترین عامل اقلیمی در پراکنش دمنه کوهی و دما، مهم‌ترین عامل در پراکنش درمتن دشتی در استان اصفهان می‌باشد و به‌طور کلی دمنه دشتی در مقایسه با دمنه کوهی از دامنه برخی یپسار بالانزی نسبت به عوامل اقلیمی برخوردار پیوسته به‌طوری که می‌توان این را به‌عنوان یک گونه همه جایی ذکر کرد.

واژه‌های کلیدی: درمتن دشتی، درمنه کوهی، متغیرهای اقلیمی، تحلیل عامی، استان اصفهان

مقدمه

مراجع از نظر اقتصادی، اجتماعی و زیست‌محیطی از اهمیت ویژه‌ای برخوردار هستند و در صورتی که به‌طور صحیح مدیریت و بهره‌برداری سرنوشت، می‌توانند نشان مهیجی در شکوفایی اقتصاد کشور ایفا کنند. مدیریت و بهره‌برداری صحیح از مراجع، مسئله شناختی خصوصیات گونه‌های اصلی تشکیل دهنده و تعیین عوامل مؤثر بر پراکنش آنها می‌باشد (1). گیاهان

1. به‌ترتیب کارشناس ارشد و استادیار مرع و آبخیزداری، دانشگاه یزد، باغ‌های طبیعی، دانشگاه صنعتی اصفهان
2. استادیار پژوهشی مرکز تحقیقات منابع طبیعی و کشاورزی استان اصفهان
ssoltani@cc.iut.ac.ir

* مسئول مکاتبات، پست الکترونیکی:

358
سالهای اخیر انجام شده، دلایل بر کنترل بالقوه اقیمت‌ها روی پراکنش گیاهان دارد(۱۴).

یکی از جنس‌های مهم مراجع ایران جنس درمنه است. این جنس از خانواده روبشی‌های ایران (Artemisia) و توکار محصولش ۲۴ جنین از آن در ایران شناسایی شده است(۶). پراکنش و سیستم این گونه‌ها به‌خصوص در مطالعات این جنس درمنه به‌خصوص در اصلی روبشی‌های ایران و توکار تلفیق نموده است(۲۱). گونه‌ها و زیرگونه‌های مختلف این جنس معمولاً جهت طبقه‌بندی گروه‌های کیاهی مورد استفاده قرار می‌گیرند. زیرگونه‌های این جنس هر کدام شاخه‌های مختلفی دارند.

کسترگکی روغن‌های این گونه و خصوصیات مختلف آن باعث توجه محققین رشته‌های مختلف شده است. بطوری که تحقیقات انجام گرفته روی ویژگی‌های مختلف گونه‌های این گونه به نسبت سایر گونه‌ها بیشتر است.

مواد زیر برخی از محققین ایرانی در مطالعات خود نشان داده‌اند(۸). ارتفاع درجه حرارت، رطوبت و شرایط اقلیمی دانسته‌اند. نتایج بررسی رشته زبان نشان داد که پوشش برف زمستانی موی توانایی ارتب کا قه و زندگی ماندن بهاری درمنه در افزایش دیده(۱۹). بازگشت و همکاران در مطالعات درمانی که قابلیت زدن ماندگاری درمنه و قدرت درجه حرارت بالا، رطوبت در دسترس کاهش اهمیت بی نسبت و سرعت بی‌یکسان و عوامل افزایش دیده کاهش پیدا می‌کند. این تحقیجه‌گی‌ها نموده که در بیشتر فصل رشد کمپیوتر بسیار مهم محسوس کنترل‌کننده در افزایش دیده با کاهش درجه حرارت در جوان‌زندگی و زندگی ماندن بهاری درمنه دارد(۲۰). بی‌یکسان و همکاران تأثیر زمان بارندگی بر روی پوشش درمنه ضروری است. تحقیق قرار داده. نتایج تحقیق آنها نشان داد که بارندگی به‌عبارات تأثیر بر روی پوشش گیاهی مورد مطالعه

مواد در بررسی حاضراً از استفاده از درمنه‌ای اخ‌شده از سازمان

مطالعه.
روش‌ها

با توجه به این که داده‌های استان‌گذاری هواناسی در این پژوهش استفاده شده نخستین گام تبدیل داده‌های نقشه‌ای به داده‌های بهنامی این است اما این تغییر نتایج به همان‌طور که مقدور بوده. به این منظور از روش ماتریسی به روش کسری کاری با شیکتیک به ابعاد 132/6/1837/8 کیلومتر استفاده شد. با توجه به ابعاد این شیکتیک، تعداد 273 سلول در استان اصفهان با طول و عرض مشخص تعیین و مقادیر متغیرهای اقیانسی، مربوط به سلول‌های این سلول‌ها توزیع شدند. سپس به منظور تکمیل ابعاد ماتریسی داده‌ای از طرح حمل و نقل عمومی به روش مولفه‌های مینا و دوریان وایزلستکس (Principal Component Analysis) در نرم‌افزار (13) استفاده SPSS ver.13 (Varimax rotation) کرده‌ای. به‌طور کلی در تیپ‌های اجرای تحلیل عمومی، در نهایت 2 ماتریس به‌دست می‌آید. یکی ماتریس امتیاز عماملی به‌کار می‌رود که به کمک مکانی عوامل استخراج شده را در سطح منطقه شناسی‌ها به دست و از این ماتریس برای ترتیب نقش‌های عاملی استفاده شد و ماتریس دیگر ماتریس بارهایهای عاملی (Factor loading matrix) را به کمک از عوامل استخراجی حاصل از تحلیل عماملی نشان می‌دهد.

در نهایت 1250/0000 استان اصفهان (نهایت شده توسط مرکز تحقیقات منابع طبیعی استان اصفهان) در 7 تیپ‌های دارای دو گونه درمنه کوهو و دشتی مشخص گردید. این تیپ‌ها شامل: 1-تیپ درمنه کوهو و 2-تیپ درمنه دشتی به‌صورت یک‌دست.

روش‌ها

با توجه به این که داده‌های استان‌گذاری هواناسی در این پژوهش استفاده شده نخستین گام تبدیل داده‌های نقشه‌ای به داده‌های بهنامی این است اما این تغییر نتایج به همان‌طور که مقدور بوده. به این منظور از روش ماتریسی به روش کسری کاری با شیکتیک به ابعاد 132/6/1837/8 کیلومتر استفاده شد. با توجه به ابعاد این شیکتیک، تعداد 273 سلول در استان اصفهان با طول و عرض مشخص تعیین و مقادیر متغیرهای اقیانسی، مربوط به سلول‌های این سلول‌ها توزیع شدند. سپس به منظور تکمیل ابعاد ماتریسی داده‌ای از طرح حمل و نقل عمومی به روش مولفه‌های مینا و دوریان وایزلستکس (Principal Component Analysis) در نرم‌افزار (13) استفاده SPSS ver.13 (Varimax rotation) کرده‌ای. به‌طور کلی در تیپ‌های اجرای تحلیل عمومی، در نهایت 2 ماتریس به‌دست می‌آید. یکی ماتریس امتیاز عماملی به‌کار می‌رود که به کمک مکانی عوامل استخراج شده را در سطح منطقه شناسی‌ها به دست و از این ماتریس برای ترتیب نقش‌های عاملی استفاده شد و ماتریس دیگر ماتریس بارهایهای عاملی (Factor loading matrix) را به کمک از عوامل استخراجی حاصل از تحلیل عماملی نشان می‌دهد.

در نهایت 1250/0000 استان اصفهان (نهایت شده توسط مرکز تحقیقات منابع طبیعی استان اصفهان) در 7 تیپ‌های دارای دو گونه درمنه کوهو و دشتی مشخص گردید. این تیپ‌ها شامل: 1-تیپ درمنه کوهو و 2-تیپ درمنه دشتی به‌صورت یک‌دست.
جدول 1. مقدار ویژه، درصد واریانس و واریانس تجمعی هر یک از عوامل

<table>
<thead>
<tr>
<th>عامل</th>
<th>مقدار ویژه</th>
<th>درصد واریانس</th>
<th>واریانس تجمعی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.032</td>
<td>31.6%</td>
<td>31.6%</td>
</tr>
<tr>
<td>2</td>
<td>0.015</td>
<td>18.2%</td>
<td>49.8%</td>
</tr>
<tr>
<td>3</td>
<td>0.012</td>
<td>15.0%</td>
<td>64.8%</td>
</tr>
<tr>
<td>4</td>
<td>0.008</td>
<td>9.8%</td>
<td>74.6%</td>
</tr>
<tr>
<td>5</td>
<td>0.005</td>
<td>5.7%</td>
<td>80.3%</td>
</tr>
<tr>
<td>6</td>
<td>0.003</td>
<td>3.2%</td>
<td>83.4%</td>
</tr>
<tr>
<td>7</td>
<td>0.002</td>
<td>2.4%</td>
<td>85.9%</td>
</tr>
<tr>
<td>8</td>
<td>0.001</td>
<td>1.2%</td>
<td>87.1%</td>
</tr>
<tr>
<td>9</td>
<td>0.001</td>
<td>1.0%</td>
<td>88.0%</td>
</tr>
</tbody>
</table>

3- 3- تبدیل درمنه دشی به عنوان گونه غالب و
4- 4- تبدیل درمنه دشی به عنوان گونه همراه هستند.
در کام بعدی نقشه پوستش گیاهی مطالعه دیپا مطالعه بیشتر گرددی. بطوری که نقشه پوستش گیاهی نیز دارای

53سلول شد و سلوهای هم از نظر وضوح و نسبت بین نتایج استخراج میزان شماره دیگری از شکه قلمی (متغیرهای) بکار گرفت.

با توجه به اینکه میزان عامل را به عنوان گونه بالتیک. با استفاده گیاهی و تابه اتساخ درمنه دشی کار با استفاده گیاهی و تابه اتساخ درمنه دشی

نقطه شکه پوستش گیاهی 53سلول) با نقشهای عوامل و

میزان عامل به تنهایی 31 درصد از کل واریانس متغیرهای

شکه پوستش گیاهی و تابه اتساخ درمنه دشی کار با استفاده گیاهی و تابه اتساخ درمنه دشی

(1) 42 درصد از کل واریانس متغیرهای اولیه را به لحاظ عملي ثبت گردیده دیجیتال گرافیک. این مدل کلیه متغیرهای مرتبط با بارش در زیر قرار گرفته است. این درصد از کل واریانس بارش شناخته شد. شکل

1. برای اندازه‌گیری یک عامل را به لحاظ عملي ثبت گردیده دیجیتال گرافیک. این مدل کلیه متغیرهای مرتبط با بارش در زیر قرار گرفته است. این درصد از کل واریانس بارش شناخته شد. شکل

2. برای اندازه‌گیری یک عامل را به لحاظ عملي ثبت گردیده دیجیتال گرافیک. این مدل کلیه متغیرهای مرتبط با بارش در زیر قرار گرفته است. این درصد از کل واریانس بارش شناخته شد. شکل

(2) 42 درصد از کل واریانس متغیرهای اولیه را به لحاظ عملي ثبت گردیده دیجیتال گرافیک. این مدل کلیه متغیرهای مرتبط با بارش در زیر قرار گرفته است. این درصد از کل واریانس بارش شناخته شد. شکل

بتای 53سلول به عنوان گونه غالب و 7.1 درصد از کل واریانس متغیرهای اولیه را به لحاظ عملي ثبت گردیده دیجیتال گرافیک. این مدل کلیه متغیرهای مرتبط با بارش در زیر قرار گرفته است. این درصد از کل واریانس بارش شناخته شد. شکل

نتایج

اولین گام جهت اجرای تجزیه عاملی، بررسی کارایی این روش

مشابه که با محاسبه ضریب KMO با ضریب کفایت

نمونه‌گیری (Kaiser-Meyer-Olkin)، امکان یک‌تا انتخاب ضریب

362
جدول ۲. ماتریس پارامترهای دوران پایه‌برداری زمین‌پروری ۷/۸% ±

<table>
<thead>
<tr>
<th>متغیر</th>
<th>تابش</th>
<th>دما</th>
<th>بارش</th>
</tr>
</thead>
<tbody>
<tr>
<td>پارندرگی زمستان (میلی‌متر)</td>
<td>0/965</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پارندرگی ماه آوریل (میلی‌متر)</td>
<td>0/953</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد روزها با بارش بیش از ۱ میلی‌متر آوریل</td>
<td>0/940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مقدار بارش سالانه (میلی‌متر)</td>
<td>0/958</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مقدار بارش زانویه (میلی‌متر)</td>
<td>0/966</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد روزها با بارش بیش از ۱ میلی‌متر سالانه</td>
<td>0/914</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مقدار بارش بهاره (میلی‌متر)</td>
<td>0/903</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مقدار بارش پاییزه (میلی‌متر)</td>
<td>0/893</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد روزها با بارش بیش از ۱ میلی‌متر زانویه</td>
<td>0/873</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد روزها با بارش بیش از ۵ میلی‌متر زانویه</td>
<td>0/866</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد روزها با بارش بیش از ۱۰ میلی‌مترآوریل</td>
<td>0/872</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد روزهای بارانی آوریل</td>
<td>0/795</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد روزهای بارانی سالانه</td>
<td>0/791</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد روزهای بارانی یک‌شناس</td>
<td>0/791</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد روزها با بارش بیش از ۵ میلی‌متر سالانه</td>
<td>0/791</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تعداد روزهای برفی سالانه</td>
<td>0/791</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* متغیرهای که با عوامل استخراجی همبستگی کمتر از ۰/۷۷ داشته‌اند.
<table>
<thead>
<tr>
<th>متغیر</th>
<th>شاخص</th>
<th>نتیجه‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>تعداد روزهای بیخیضان زانویه</td>
<td>0/243</td>
<td></td>
</tr>
<tr>
<td>تعداد روزهای بیخیضان سالانه</td>
<td>0/247</td>
<td></td>
</tr>
<tr>
<td>تعداد روزهای بیخیضان مارس</td>
<td>0/249</td>
<td></td>
</tr>
<tr>
<td>درصد رطوبت نسبی سالانه</td>
<td>0/248</td>
<td></td>
</tr>
<tr>
<td>درصد رطوبت نسبی اوریل</td>
<td>0/242</td>
<td></td>
</tr>
<tr>
<td>متوسط درجه حرارت حداکثر سالانه(سانتی‌گراد)</td>
<td>0/879</td>
<td></td>
</tr>
<tr>
<td>متوسط درجه حرارت حداکثر سالانه(سانتی‌گراد)</td>
<td>0/868</td>
<td></td>
</tr>
<tr>
<td>متوسط درجه حرارت حداکثر سالانه(سانتی‌گراد)</td>
<td>0/854</td>
<td></td>
</tr>
<tr>
<td>متوسط درجه حرارت حداکثر سالانه(سانتی‌گراد)</td>
<td>0/854</td>
<td></td>
</tr>
<tr>
<td>متوسط درجه حرارت حداکثر سالانه(سانتی‌گراد)</td>
<td>0/761</td>
<td></td>
</tr>
<tr>
<td>متوسط درجه حرارت حداکثر سالانه(سانتی‌گراد)</td>
<td>0/733</td>
<td></td>
</tr>
<tr>
<td>متوسط درجه حرارت حداکثر سالانه(سانتی‌گراد)</td>
<td>0/702</td>
<td></td>
</tr>
<tr>
<td>تعداد ساعات آفتابی سالانه</td>
<td>0/219</td>
<td></td>
</tr>
<tr>
<td>تعداد ساعات آفتابی مارس</td>
<td>0/244</td>
<td></td>
</tr>
<tr>
<td>متوسط سرعت باد سالانه(نات)</td>
<td>0/219</td>
<td></td>
</tr>
<tr>
<td>تعداد ساعات آفتابی جولای</td>
<td>0/286</td>
<td></td>
</tr>
<tr>
<td>متوسط سرعت باد پاییز(نات)</td>
<td>0/273</td>
<td></td>
</tr>
</tbody>
</table>
بررسی اثر عوامل اقلیمی بر گسترش درمانه کوهی و درمنه دشتی در استان اصفهان...
پیشیندان ماسر، درصد رطوبت نسبی سالانه و در دایر همیشهی منفی با لایه‌بندی گیاهی، به دیدن منظور با استفاده از نقشه شیکبندی شده پوشش گیاهی، سلولهای مرتبط به هریک از تیپهای چهارگانه دارای درصد کم‌هی و دشتی (تیپ درمته کوهی و گیاهی (Artemisia aucheri - Astragalus sp.) به صورت یکدست، تیپ درمته دشتی به عنوان گونه غالب، تیپ درمته دشتی به عنوان گونه همراه، مشخص گردید و با اطمینان آنها بر نقشه متغیرها و امتیازات عاملی، امتیاز هر یک از سلولهای دریای استخراج گردید و بر این اساس با استفاده از اطلاعات مربوط به سلولهای تشکیل دهنده هر تیپ، متوسط امتیازات عوامل به سه گروه در هر چهارگانه تعیین گردید که در جدول ۳ ارائه شده است. بر اساس نتایج حاصل، مشخصات هر یک از تیپ‌ها تشریح می‌گردد.

۱. تیپ درمته کوهی و گیاهی این تیپ (با توجه به نقشه پوشش گیاهی استان و سلولهای استخراج شده از آن) حدود ۴ درصد از پوشش کل مراتع استان
جدول ۳. امتیازات عاملی در تپه‌های مختلف درمه کوهی و دشتی

<table>
<thead>
<tr>
<th>نام تیپ</th>
<th>عملکرد دما</th>
<th>عملکرد بارش</th>
<th>متوسط ارتفاع (متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>درمه کوهی و گون کهور</td>
<td>۲۴۹۰</td>
<td>۲۳۶۹</td>
<td>۴۷۸۴</td>
</tr>
<tr>
<td>درمه دشتی به صورت یک‌دست</td>
<td>۲۴۹۰</td>
<td>۲۳۶۹</td>
<td>۴۷۸۴</td>
</tr>
<tr>
<td>درمه دشتی به عنوان گونه غالب</td>
<td>۲۴۹۰</td>
<td>۲۳۶۹</td>
<td>۴۷۸۴</td>
</tr>
<tr>
<td>درمه دشتی به عنوان گونه همراد</td>
<td>۲۴۹۰</td>
<td>۲۳۶۹</td>
<td>۴۷۸۴</td>
</tr>
</tbody>
</table>

۱. تیپ درمه دشتی به عنوان گونه همراد در این تیب درنهایت به همراه گونه‌های Cormulaca leucocladua، Anabasis aphylla، Salsola orientalis به عنوان گونه به‌ماسا در این تیب درنهایت دشتی، همان‌طور که داده‌های جدول ۲ نشان می‌دهد عملکرد در این تیپ عامل قابل توجهی است و بیشترین امتیاز مثبت از عملکرد بارش کسب کرده است. همچنین بیشترین امتیاز منفی در این تیپ را عامل دما به خود اختصاص داده است. متوسط ارتفاع این تیپ در استان در حدود ۲۴۹۱ متر است که بالاترین ارتفاع را نسبت به سایر تیپ‌ها دیگر دارد.

۲. تیپ درمه دشتی به صورت یک‌دست این تیپ در حدود ۳۹/۲۱ درصد از کل مساحت مراتع استان مصدح و سطحی در حدود ۲۹۷/۲۴ درصد از استان را پوشش می‌دهد. با دقت در جدول ۲ نشان داده شده که عملکرد در این تیپ از اهمیت کمتری نسبت به درمه کوهی بخشی‌دار است و به‌ویژه است که بدون این تیپ عامل است که درهای آبیاری می‌باشد.

۳. تیپ درمه دشتی به عنوان گونه غالب Anabasis aphylla در این تیپ درنهایت به همراه گونه‌های Hamada spp، Noea mucranata، Acantholimon spp و غیره دیده می‌شود. این تیپ در حدود ۱۹/۹۱ درصد از کل مساحت مراتع استان را به‌خود اختصاص می‌دهد. متوسط ارتفاع پراکش این تیپ در استان ۱۷۸۹ متر می‌باشد که در مقایسه با تیپ درنهایت به‌صورت یک‌دست از ارتفاع پراکش بالاتری بخشی‌دار است. عملکرد تابش در این تیپ عامل مثبتی به شمار رود.
جدول 2: میانگین متغیرهای اولیه سالانه در چهار تیب درمه

<table>
<thead>
<tr>
<th>متغیر</th>
<th>تنگه کوهی و گون</th>
<th>گون غلاب</th>
<th>یکدست</th>
<th>درمه دشتی به عتنان</th>
<th>درمه دشتی به عتنان</th>
</tr>
</thead>
<tbody>
<tr>
<td>ارتفاع(متر)</td>
<td>224.6</td>
<td>249.8</td>
<td>248</td>
<td>169.9</td>
<td>168.5</td>
</tr>
<tr>
<td>متوسط حداقل درجه حرارت سالانه(سانتیگراد)</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>متوسط حداقل درجه حرارت سالانه(سانیگراد)</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>متوسط حداقل درجه حرارت سالانه(سانتیگراد)</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>تعداد روزها با بارش بیش از 5 میلی متر سالانه</td>
<td>102</td>
<td>103</td>
<td>102</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>تعداد روزها با بارش بیش از 10 میلی متر سالانه</td>
<td>69</td>
<td>70</td>
<td>70</td>
<td>69</td>
<td>69</td>
</tr>
<tr>
<td>تعداد روزهای باری سالانه</td>
<td>478</td>
<td>478</td>
<td>478</td>
<td>478</td>
<td>478</td>
</tr>
<tr>
<td>تعداد روزهای باری سالانه</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>میانگین مقدار رطوبت بیشتر سالانه</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>تعداد روزهای بیشتر سالانه</td>
<td>102</td>
<td>103</td>
<td>102</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>تعداد ساعت آفتاب سالانه</td>
<td>3050/5</td>
<td>3050/5</td>
<td>3050/5</td>
<td>3050/5</td>
<td>3050/5</td>
</tr>
<tr>
<td>متوسط سرعت باد سالانه(میلیمتر)</td>
<td>(میلیمتر)</td>
<td>(میلیمتر)</td>
<td>(میلیمتر)</td>
<td>(میلیمتر)</td>
<td>(میلیمتر)</td>
</tr>
<tr>
<td>مقدار بارش سالانه(میلیمتر)</td>
<td>111/6</td>
<td>111/6</td>
<td>111/6</td>
<td>111/6</td>
<td>111/6</td>
</tr>
<tr>
<td>میانگین مشاهده دریافت میانگین مشاهده دریافت میانگین مشاهده دریافت</td>
<td>3420</td>
<td>3420</td>
<td>3420</td>
<td>3420</td>
<td>3420</td>
</tr>
</tbody>
</table>

دریافت درهمیوت اصلی اقلیمی که مناطق مختلف در ایران، و بریتانیا جدایا می‌گردد و درجه حرارت، سرعت باد، توان بارش و ساعت آفتاب سالانه در حدود 47 درصد از واریانس متغیرهای اولیه را پاسخ می‌دهد(13).

دریافت درهمیوت اصلی اقلیمی که مناطق مختلف در ایران و بریتانیا جدایا می‌گردد و درجه حرارت، سرعت باد، توان بارش و ساعت آفتاب سالانه در حدود 47 درصد از واریانس متغیرهای اولیه را پاسخ می‌دهد(13).

دریافت درهمیوت اصلی اقلیمی که مناطق مختلف در ایران و بریتانیا جدایا می‌گردد و درجه حرارت، سرعت باد، توان بارش و ساعت آفتاب سالانه در حدود 47 درصد از واریانس متغیرهای اولیه را پاسخ می‌دهد(13).
پیشترین درصد حضور را دارد. او معتقد است که این گونه خاص مناطقی با پارس کم و سرماخ شکل زمستانه است. در حالتی که گونه درم دنیا که پیشترین امکان می‌کند را از عامل دما و گرماپایی کسب نموده و روش‌گاه‌های سردم و رشد مطلوب این است (۲).

فریدن و همكاران در تحقیقی بر روی درمان دشته در بیابان نجوا، به این نتیجه رسیدند که عوامل اقیمی مانند تغییرات درجه حرارت و بارانگی و تبخیر و تعرق در استقرار درمن دشته در این منطقه پیشترین را دارد (۲). همچنین کاوکر (۱۹۸۰) نیز در تحقیقی ذکر نموده است که توزیع درمن دشته ارتباط نزدیکی با دمای و بارانگی دارد (۱۱).

این تحقیق کارایه هر چه بیشتر روش‌های چند منظیره از که انتخاب روایتی از عوامل اقیمی در توزیع و پراکنش گونه‌های درمن دشته و کوهی در فضاهای مختلف استان اصفهان را نشان می‌دهد.

به‌طور کلی گونه درمن دشته کوهی از نظر منظیره‌های اقیمی از دامنه اکولوژیک‌های محدودتری نسبت به گونه درمن دشته بی‌خرداد است. در حالی که گونه درمن دشته بی‌خرداد چشم‌گیری در تغییرات کلیه عناصر اقیمی و ارتقای در استان از

منابع مورد استفاده

۱. آذینرون و.، م. جعفری. ع. جلیلی و. م. ع. زارع. هاشمی. ۱۳۸۷. بررسی تأثیر خصوصیات خاک و تغییرات ارتقای بر پراکنش دو گونه درمن. منابع طبیعی ایران ۱۵۳۵ (۱۳۸۷-۹۸:۹۳.

۲. خداقی. م. ۱۳۸۷. بررسی زیست اقیمی گیاهی حوضه آبخیز زاینده رود. پایان تام دکتری اقیمشناسی، دانشگاه علوم انسانی، اصفهان.

۳. خداقی. م.، س. م. مسعودیان و. م. کاوهی. ۱۳۸۵. بررسی گیاه اقیم شناختی حوضه زاینده رود. پژوهش و سازندگی در منابع طبیعی.

۴. ضیا تبر احمدی. م. و. م. زارع. ۱۳۸۷. اقیمی و پراکنش گیاهی. انتشارات دانشگاه مازندران.

۵. فرشادر. ع. و. ا. ۱۳۸۰. اصول و روش‌های آماری چند متغیره. انتشارات طالبیان، دانشگاه رازی، کرمانشاه.

۶. مظفری. و. و. ۱۳۸۶. شناسایی گونه‌های جنس درمن در ایران. پایان‌نامه کارشناسی ارشد علوم گیاهی، دانشگاه علوم، دانشگاه تهران.

۷. مرکز تحقیقات منابع طبیعی استان اصفهان. ۱۳۸۰. پوشش گیاهی استان اصفهان.