تیمین درصد پوشش گیاهی مناطق خشک بنا به کارگری سنگش از دور و سیستم اطلاعات جغرافیایی

(مطالعه مودی: حوزه آبخیز ندوشن)

جلال عبداللهی ها، ناصر باغستنی، محمد حسن توافی و محمد حسن رحیمیان

(تاریخ دریافت: 85/3/1؛ تاریخ پذیرش: 86/5/9)

چکیده

تحقیق حاضر با هدف تیمین درصد جهت استفاده اطلاعات ماهواره‌ای و فاکتورهای محیطی در راستای دسترسی به روی برای ایجاد نفشه پوشش گیاهی در مناطق خشک صورت گرفته است. این مطالعه در منطقه‌های و به سمت حدود 6000 کیلومتر در حوزه آبخیز ندوشن استان یزد انجام گرفت. سایت‌های مطالعاتی در 15 نقطه از 10 نقطه گیاهی به گونه‌ای منطقه مستقر و درصد پوشش گیاهی ردیابی شده در نوشتار سال ۱۳۸۱ انجام گیری شد. با تیمین موقتی 18 سایت‌های زمینی روی تصویر ماهواره‌ای لندس با همکاری ندوشن ETM گردید. به‌طور کلی این نشان داد که سایت‌های پوشش گیاهی در مناطق خشک و فنی مناطق تهیه گردید. سپس از روی تمایل اطلاعات اعداد مربوط به 50 سایت مطالعاتی استخراج گردید و از طریق رگرسیون خطی چند متغیره، هم‌بستگی و روابط بین درصد پوشش گیاهی با اطلاعات مربوط به همراهی با سایت‌های در مدل مناسب استخراج شده، ضرایب جهت ساخت نقشه بهبود مشخص و با استفاده از معادله رگرسیون، نشان داده شده درصد پوشش گیاهی منطقه ترسیم گردید و دقت آن تیمین شد. نتایج این تحقیق نشان داد که استفاده همواره از چندین پارامتر متجر به نتیجه‌گیری بهتر برای تیمین درصد پوشش گیاهی مرتع در مناطق خشک می‌شود.

واژه‌های کلیدی: پوشش گیاهی، سنگش از دور، سیستم اطلاعات جغرافیایی، رگرسیون چند متغیره، تیمین

مقدمه

درست‌پایی به اطلاعات 재اما در مطلوب و سیستم، در شرایط سخت منطقه خشک و باید بیان شده و نیز عدم توانایی دسترسی به برخی عرصه‌های کوهستانی و کسری شاید نتیجه‌برای سایر استفاده از

1. به ترتیب اعضای هیئت علمی و کارشناس مرکز تحقیقات کشاورزی و منابع طبیعی پژوهشی
2. کارشناس مقاله ملی تحقیقات شوری، پژوهشی jaabdollahi@yahoo.com

* مسئول مکاتبات: پست الکترونیکی

301
بخش‌هایی اکولوژیکی مؤثر نیستند، بلکه زمانی که از شاخص‌های حاصل از ترکیب باندها استفاده می‌شود، باعث تشخیص بهتر هر کدام از مناطق اکولوژیکی می‌شود(9 و 17).

علاوه بر مطالب گسترده جهت ساخت شاخص‌های مختلف پوشش گیاهی از آن باندهای ماهورهای و یا اصلاح شاخص‌های موجود برای شرایط خاص محیطی هر منطقه صورت گرفته است. معرفی ترین این شاخص‌ها NDVI است که از سال ۱۹۷۲ معرفی گردیده و از آن در اکثر مطالعات پوشش گیاهی اسکوئسی استفاده شده است(20). خواجی این منطقه در صفحه ۶۵ درصد شاخص NDVI را به‌طور میانگین در نقاط مختلف جغرافیایی با دقت ۶۵ درصد می‌تواند است. به این ترتیب برای پوشش‌های گیاهی کمتر از ۱۵/۰ مقدار NDVI نشان‌دهنده گزارش شده است. به همین دلیل این شاخص اکسل پوشش گیاهی را می‌تواند برای پوشش‌های گیاهی در تصویر می‌شود و با مناطق مختلف مقدار NDVI در تهیه کمی می‌شود و با مناطق مختلف مقدار NDVI مشابهی می‌شود. اگر این تغییر رضایتی که NDVI میزان SHIN است که درصد پوشش‌های گیاهی در مناطق خشک انجام شده است.

مطالعات اولیه بر پایه استفاده از اطلاعات نق باندها و تعیین پهنه‌ای آنها جهت نمایش درصد پوشش گیاهی به‌طور کلی به عنوان مثال مطالعه تیقفی لحی انجام گرفته توسط واحدهای نشان داد که درصد پوشش گیاهی منطقه مورد مطالعه با باندهای TM3 رابطه‌ای معنی‌داری دارد و می‌توان نتیجه گرفت که با TM4 استفاده از باندهای فتو لحمیه پوشش گیاهی منطقه مورد مطالعه امکان‌پذیر است. (8) این نتیجه در تحقیق صورت گرفته توسط ارزیابی در کشور استرالیا نیز حاکم گردیده است.

همچنین این نتیجه را با دقت نارنجی که تأثیر فاکتورهای محیطی و اکولوژیکی هر منطقه در نوع رفتار طبیعی گیاهان آن منطقه مؤثر نیست. این نتیجه به محض ویدیوی استفاده از اطلاعات تک بانده در زیاتر حاکم بر مناطق خشک و تهیه خشکی می‌گردد. چنانکه بلیک بر مطالعه خود که به منظور مطالعه‌های شش منطقه مختلف پوشش گیاهی استفاده از داده‌های انجام تیم داده است. نتیجه گرفته که می‌تواند به تهیهی در تشخیص
مطالعه در محدوده جغرافیایی 42° 30’ تا 43° 30’ عرض شمالي و 24° 37’ تا 25° 47’ طول شرقی واقع شده است. جدایاً ارتفاع از سطح دریا ۳۳۶ تا ۱۸۰ متر و بیش از سطح از ۰ تا ۱۵ درصد متری گزارش شده است. متوسط یافته‌های سالانه حوزه نیز ۱۱۷ میلی متر است. تقریباً تمام این نمونه‌ها را در این منطقه با منجر به برخی نرخ عالی گردش و پیچیده نرولات حوزه را بالا درست بارندگی به گزارش می‌دهد. متوسط دما منطقه بر حسب ارتفاع از ۱۵ تا ۱۲ درجه سانتی‌گراد متفاوت می‌باشد. گرمترین ماه سال تیر و سردترین آن در ماه اسفند است.

روش کار ۱. نماهای مختلف انجام این کار را نشان می‌دهد. همان‌طور که در این مورد در استفاده از منابع مورد نیاز در این تحقیق از سه نوع مختلف کسب شده است که شامل اطلاعات میدانی، نقشه‌های موجود از فاکتورهای محیطی منطقه و تقارن‌هایی که در این اطالعات نشان می‌گردد.

اطلاعات میدانی

جفت انجام کارهای صحرا و تحقیق در اواسط بهره‌برداری تا اواست نیاز مثال ۱۳۸۱. با استفاده از تجربیات موجود و با توجه به نتایج مناسب برای استقرار ساتلیت مورد نیاز مشخص گردید. همچنین بیانی صحرا و سیستمایی از تنک‌بندی سنجش از دور (RS) و سیستم اطلاعات جغرافیایی (GIS) در منطقه خشک، همچنین دستی‌پایه به چگونگی پردازش اطلاعاتی که با توجه به درصد کم پوشه گیاهی در منطقه خشک با استفاده از شاخص‌های مناسب برای ترکیب گیاهی مورد نظر بوده است.

مواد و روش‌ها

موقعیت محل جغرافیایی

محل اجرا به طور جغرافیایی در اطراف تپه‌ی جنوب‌غربی مه‌خور واقع در بزرگ حوزه پر برده‌ی ارکان و در دام‌های ساحلی هر یک از آنها پیکرهای

۳۰۳

جفت استقرار و ۲۵ نقطه تهیه می‌شود. انجام پذیردی و در مرکز هر یک از آنها چهار نقطه که هر یک از آنها تپه‌ای
شکل 1. مراحل مختلف انجام تحقیق

سایت فرصت و در بانک اطلاعاتی اکسل یادداشت گردید. این مجموعه داده به عوامل متغیری وابسته مطالعه مشاهده می‌شود.

فاکتورهای محیطی

بدید اثرات بارز فاکتورهای محیطی بر روی سیستم پوشش گیاهی در مناطق خشک، انجام مطالعات پوشش گیاهی در چنین مناطقی می‌تواند با بررسی فاکتورهای محیطی حاکم بر آن کوبیده شد. این قطعات نمونه‌های محله‌ای آمار برداری لحاظ شده‌اند. بدین وسیله ۲۵ نقطه آمار برداری در هر سایت مشخص گردید. شکل 2 (ب) نحوه انتخاب محله‌ای آمار برداری در هر سایت را نشان می‌دهد.

پس از پوشش گیاهی در تمامی ۲۵ نقطه آمار برداری هر سایت و با استفاده از یک پلاط ۲ متری‌بری اکاذب شده و معادل به‌دست آمده به عوامل درصد پوشش گیاهی برای هر
منطقه همراه باش. بنابراین برای تعیین میزان تأثیر این فاکتورها بر روی درصد پوشش گیاهی در منطقه مورد مطالعه، اقدام به تهیه نقشه‌های مربوط به فاکتورهای محیطی شد. بدین منظور ابتدا نقشه توپوگرافی با مقیاس 1:50000 از منطقه مورد مطالعه تهیه و دیجیتال شد. سپس با به کارگیری این نقشه و استفاده از قابلیت‌های نرم‌افزاری اولیس، نقشه‌های ارتقاع از سطح دریا (RMSE)، شب (Aspect) و (Slope) محاسبه شد که در نهایت با استفاده از سیستم هم‌اکنون جغرافیایی گردید. در نهایت با انجام عملیات کراسینگ (Crossing)، مقادیر عدید هر یک از این لایه‌های محل ساخته‌های مورد مطالعه استخراج گردید و به عنوان مجموعه‌ای از متغیرهای مستقل وارد پاسک اطلاعاتی اکسل شد. این داده‌ها تحت عنوان فاکتورهای محیطی مورد بررسی و آنالیز آماری قرار گرفتند.

داده‌های سنجش از دور برای اجرای این تحقیق از تصویر ماهواره ندست7 مربوط به 17 آذر ماه سال 1391 (منطقه بزرگ سیاره) استفاده شد. همچنین برای کسب اطلاعات از داده‌های صحرایی استفاده شد. به‌طور کلی، در این پژوهش، تا حدی که امکان‌پذیر بود، استفاده شد.
جدول 1. قسمتی از بانک اطلاعاتی ایجاد شده در نرم افزار اکسل و نحوه چیدمان اطلاعات در آن

<table>
<thead>
<tr>
<th>متغیرهای مستقل (X<sub>i</sub>)</th>
<th>متغیر واپس‌نمونه‌برداری (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>NDVI</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
جدول 2: ماتریس همبستگی بین اطلاعات پاندیده تصویر ماهواره‌ای لندست \(ETM^+ \) و درصد پوشش گیاهی

<table>
<thead>
<tr>
<th>متغیر</th>
<th>درصد</th>
<th>پوشش</th>
<th>باند 1</th>
<th>باند 2</th>
<th>باند 3</th>
<th>باند 4</th>
<th>باند 5</th>
<th>باند 6-8 باند 7</th>
<th>باند 6-8 باند 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد</td>
<td>1/24</td>
<td>پوشش</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
</tr>
<tr>
<td>باند 1</td>
<td>0/24</td>
<td>پوشش</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
</tr>
<tr>
<td>باند 2</td>
<td>0/24</td>
<td>پوشش</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
</tr>
<tr>
<td>باند 3</td>
<td>0/24</td>
<td>پوشش</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
</tr>
<tr>
<td>باند 4</td>
<td>0/24</td>
<td>پوشش</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
</tr>
<tr>
<td>باند 5</td>
<td>0/24</td>
<td>پوشش</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
</tr>
<tr>
<td>باند 6-8 باند 7</td>
<td>0/24</td>
<td>پوشش</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
<td>0/262</td>
</tr>
</tbody>
</table>

اطلاعات موجود در پاندل می‌باشد. این باند، زمین و پاندل ماهواره‌ای و شاخص‌ها در شکل 3 آورده شده است. این نمونه‌ها همبستگی بیشتری می‌گذارند. با این حال، نتایج مشاهده می‌گردد که دلیل بر عدم کارایی تکنیک‌ها و پای‌شکا در تعبیر درصد پوشش گیاهی می‌باشد. پس از انجام آنالیز همبستگی، رگرسیون خطی چند متغیره روی متغیرهای مستقل ابعاد شد و بهترین مدل با توجه به درصد مقدار بالاتر \(R^2_{adj} \) انتخاب گردید. مشخصات مدل انتخابی به جهت کنترل دقیقه تولید شده از روش کراس ولیدیشن (Cross validation) استفاده شد. بدین منظور پیش‌گزاره از آمار برداشت شده می‌باشد. در 35 سایت مزار از سایت‌های فناوری اصلی استفاده گردید. سپس محل‌های آنها روزی چه تغییر پوشش گیاهی تولید شده مشخص و با عملیات کرایکتیک اعداد مربوط به این نقاط از روی نقشه استخراج شد. سپس آمار بسته‌آمده از نمونه‌برداری صریحاً با اعداد مربوط به همان نقاط در پاندل مقایسه شد. این مقایسه با برآورد خط مستقيم بین این دو مجموعه از داده‌ها صورت گرفت و ضریب تبیین \(R^2 \) حاصله به‌عنوان دقت تولید شده منظور گردید.

نتایج

در جدول 2 ماتریس همبستگی بین پاندیده مختلف تصویر ماهواره‌ای لندست و نیز درصد پوشش گیاهی در محل سایت‌های مطالعاتی نشان داده شده است. در این ماتریس مقدار متوسط از ضریب همبستگی مشاهده شد. البته بودن این ضریب در برخی از باند ماتریس ناشی از هم راستا بودن...
جدول 3. ماتریس همبستگی بین اطلاعات فاکتورهای محیطی، شاخص‌های مختلف و درصد پوشش گیاهی

<table>
<thead>
<tr>
<th>متغیر</th>
<th>درصد پوشش</th>
<th>DEM</th>
<th>SLOPE</th>
<th>ASPECT</th>
<th>NIR</th>
<th>TVI</th>
<th>PD32</th>
<th>LWCI</th>
<th>MIND</th>
<th>MIRV</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد پوشش</td>
<td>0/95</td>
<td>1</td>
<td>0/0004</td>
<td>-/0/0008</td>
<td>0/99</td>
<td>0/01</td>
<td>0/29</td>
<td>0/195</td>
<td>0/02</td>
<td>0/94</td>
</tr>
<tr>
<td>PD32</td>
<td>0/29</td>
<td>-/0/0008</td>
<td>0/33</td>
<td>1</td>
<td>0/41</td>
<td>0/28</td>
<td>0/201</td>
<td>0/08</td>
<td>0/297</td>
<td>0/194</td>
</tr>
<tr>
<td>NIR</td>
<td>0/28</td>
<td>0/33</td>
<td>0/297</td>
<td>-/0/294</td>
<td>0/218</td>
<td>0/297</td>
<td>0/294</td>
<td>0/196</td>
<td>0/218</td>
<td>0/194</td>
</tr>
<tr>
<td>TVI</td>
<td>0/194</td>
<td>0/294</td>
<td>0/297</td>
<td>0/294</td>
<td>-/0/08</td>
<td>0/299</td>
<td>0/194</td>
<td>0/192</td>
<td>0/194</td>
<td>0/192</td>
</tr>
<tr>
<td>MIND</td>
<td>0/192</td>
<td>0/299</td>
<td>0/194</td>
<td>0/194</td>
<td>0/194</td>
<td>-/0/01</td>
<td>0/09</td>
<td>0/09</td>
<td>0/09</td>
<td>0/09</td>
</tr>
<tr>
<td>MIRV</td>
<td>0/09</td>
<td>0/09</td>
<td>0/09</td>
<td>0/09</td>
<td>0/09</td>
<td>0/09</td>
<td>-/0/01</td>
<td>0/09</td>
<td>0/09</td>
<td>0/09</td>
</tr>
</tbody>
</table>

شکل 3. دو نمودارهای پراکندگی بین درصد پوشش گیاهی و داده‌های ماهورهای

 herpes کدام از این متغیرها دارای یک ضریب رگرسیون بسیار ترجیح به نیاز مدل انتخابی را نشان می‌دهد که در آن منابع غذایی به بخش رگرسیون ممکن است بیشترین می‌پذیرد.

 در مدل انتخابی چندین متغیر از این تمامی متغیرها مستقل گیاهی شدیدانه بیش از معمول می‌شود. درک این گیاهی در مورد مطالعه انتخاب گردیده‌اند.

 در مدل کار گذشته شدیدانه (جدول 4)
جدول 2. په‌رتن مدل آماری انتخاب شده به روش رگرسیون خطی چند متغیره

<table>
<thead>
<tr>
<th>ضریب همبستگی جنگ متغیره</th>
<th>ضریب تین</th>
<th>گروه مدل انتخابی</th>
<th>شماره مدل انتخابی</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R^2)</td>
<td>(R^2 adj)</td>
<td>(S.E)</td>
<td>(S.E)</td>
</tr>
<tr>
<td>0.297</td>
<td>0.296</td>
<td>0.028</td>
<td>0.028</td>
</tr>
</tbody>
</table>

جدول 5. جدول تجزیه و ارایت مربوط به مدل شماره 9

<table>
<thead>
<tr>
<th>موانع مربوطات (M.S.)</th>
<th>درجه آزادی (d.f.)</th>
<th>مجموع مربوطات (S.S.)</th>
<th>متغیرهای مستقل گورش شده در مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/0.929</td>
<td>31</td>
<td>2132/0.433</td>
<td>WC, NDBI, TNDVI, PVI, RVI, SARVI, SAVI</td>
</tr>
<tr>
<td>7/0.917</td>
<td>18</td>
<td>2113/0.597</td>
<td>Band2, Band3, Band4, Band5, Band6-1, Band7, BI, DVI, GVI, IR, PD31, VNIR</td>
</tr>
</tbody>
</table>

جدول 6. اساس متغیرهای مستقل گورش شده (predictors) و کاربردشان (excludes) توسط مدل انتخابی

<table>
<thead>
<tr>
<th>متغیرهای مستقل گورش شده در مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWCI, MIND, MINI, MIRV, MNDVI, NDBI, PVI, RVI, SARVI, SAVI, TNDVI, VI, VNIR, ARVI, Band1, Band2, Band3, Band4, Band5, Band6-1, Band7, BI, DVI, GVI, IR, PD31, VNIR</td>
</tr>
</tbody>
</table>
شکل 2. نقشه درصد پوشش گیاهی مرتع ندوش در سال 1381 به همراه پیکسل هایی از آن در گوشه تصویر. اعداد روی آنها یانگر درصد پوشش گیاهی در محل آن پیکسل است.

نمودار 1. هیستوگرام نقشه درصد پوشش گیاهی روی های سالیانه، مثل اواخر اردیبهشت هر سال برای شرایط مرتع ندوش. در مدت زمان کوتاهی درصد پوشش گیاهی را نشان دهنده عدم کارایی روشهایی است که فقط از یک باند و وجود همبستگی ضعیف بین درصد پوشش گیاهی و اطلاعات نک بانده و شخصی ها در ماتریس های همبستگی، برای اجرای مدیریت صحیح در چرا و په به برداری ت تعیین نمود.
آنالیز آماری و میزان بالایی ضرب تبدیل اصلاح شده یک مدل اکتفا کرد. بلکه تناول مدل آماری انتخاب شده را به اثبات برساند. در مناطق خشک و بهره خشکی چون عمداً پوشش گیاهی ضعیف و پراکنده است، روش فوق می‌تواند روش مناسبی در استفاده از پارامترهای کلیوپژیک و محیطی جهت برآورد درصد پوشش در نقاط باشد که پوشش گیاهی آن به اندامهای نیست.\[R^2 = 0.8974\]

نمودار 2: نمودار تغییر دقیق درصد پوشش گیاهی به روش کراس و لیدنی

متن:*

یا شاخش در تغییر درصد پوشش گیاهی مناطق خشک اстиفاده می‌نماید. این نکته در شکل ای نمایش داده می‌گردد. در این شکل همبستگی درصد پوشش گیاهی با شاخش معروف NDVI به‌کارگیری روش‌های متداول برای تغییر درصد پوشش گیاهی مناطق خشک و بهره خشک است. وجود همبستگی معنی‌دار در برخی از المان‌های ماتریس‌های همبستگی نشان می‌دهد که بیانگر این مفهوم است که اطلاعات موجود در یک باند پوشش گیاهی توسط باند یا شاخش دیگری تکرار شده است. جانچیده و منحرف‌گری همبستگی معنی‌دار در یک مدل انتخاب گزینه، این مدل از کل‌پلاستیک بی خودگرفتگی برخوردار خواهند بود. در مدل انتخاب (مدل شماره 9) از مفهوم‌های تکمیل انتخاب خوشه‌ای انتخاب شده دارای مشکل همبستگی نخواهند بود. در صورت یک باند خطر همبستگی در مدل رگرسیون و یا توجه به صورت گردیده مشاهده نمی‌شود، راه حل‌های زیادی وجود دارد که چنین آن‌ها به روش تبدیل معیارها به تکنیک‌های جدید و یا استفاده از روش‌های بدون انتخاب در ضرایب رگرسیون مانند رگرسیون ریج برای آنالیز آماری داده‌ها اشاره کرد.\(5\)

در مطالعات رگرسیون جند می‌تواند نمی‌توان نتایج
برای ما فراهم می‌نماید که بتوانیم شاخص‌های مختلفی را از خطاهای مختلف گردنه تهیه نماییم. این شاخص‌ها در هر زمانی که درکننده برای سنجش زمین و کمک به ما کمک کند. به‌نتیجه می‌رسد استفاده از شاخص‌های پوشش گیاهی و آلودگی می‌تواند در اولویت‌های مناسبی سنجش پوشش و مراحل دیگر تهیه نماییم. در این مقاله با استفاده از مکانیزم سنجش آدی‌بیرام مورد بررسی قرار داده شده است.

متن مورد استفاده

1. ازمانه، ج. 1976. کتاب اطلاعات. راهنمای ماهواره‌های لندست در مخلوطی از پوشش گیاهی. مجله منابع طبیعی ایران 5 (1).

2. چاپاری، ر. 1977. اصول سنجش از دور. مکانیزم مناسبی از دور ایران، تهران.

3. جوادی، س. 1975. استفاده از داده‌های ماهواره‌ای Landsat Mss 5. جامعه‌شناسان ملی و مهندسی مهارت تیپ با استفاده از داده‌های ماهواره‌ای لندست در منطقة اندک.

4. اثرات زاده، ع. 1978. بررسی امکان نوبت‌دهی نقشه پوشش گیاهی با استفاده از داده‌های ماهواره‌ای لندست در منطقة یک نورد. پایان‌نامه کارشناسی ارشد مرتع‌دایی، دانشگاه ایران.

5. بلوک، ج. 1977. مقاله‌ی بررسی رکورد گرایش‌های کاربردی، آموزش دانشگاهی اصفهان.

8. اکتیومه، ج. 1971. بررسی امکان تهیه نقشه پوشش گیاهی با استفاده از داده‌های ماهواره‌ای لندست در منطقة یک نورد. پایان‌نامه کارشناسی ارشد مرتع‌دایی، دانشگاه ایران.

