رابطه رشد نهال افرا پلت (Acer velutinum Boiss) با ویژگی‌های برگ

حامد یوسفزاده ۱°، مسعود طبری ۲°، کامبی اسپهبدی ۳° و غلامعلی جلالی ۴°

(تاریخ دریافت: ۲۷/۱۲/۱۳۸۷، تاریخ پذیرش: ۱۹/۴/۱۳۸۷)

چکیده
تحقیق حاضر جهت پیشینی رشد نهال پلت بر اساس ویژگی‌های برگ در یک نهالستان کوه‌زیاتی (۱۵۴۰ متر ارتفاع از سطح دریا) در شمال کشور انجام شد. برای این منظور، از بین ۷۷ اصله نهال پرورش یافته پلت، ۶۴ اصله به صورت تصادفی انتخاب شد. صفات رویشی نهال شامل طول ساقه و قطر یقه و صفات مورفولوژیک برگ شامل تعداد، وزن خشک، سماحت، صفحه فستوئی و نسبت سماحت به وزن خشک برگ انتخاب گردیده و در آزمون‌های نهال، همه این صفات از روی دانه‌های میزان زیتونه ساقه و روی زیتونه ساقه کنترل کرده و بعد از برآوردن نتایج، قطر یقه و وزن خشک و وزن ساقه به همراه با دقت مناسب برآورده شد. در نهایت، همچنین بر اساس وزن برگ، صفحات مورفولوژیک برگ، میزان زیتونه ساقه، زیتونه ساقه و وزن برگ را به دقت مناسب برآورده شد. به نتایج این تحقیق، می‌توان استنتاج کرد که با توجه به همبستگی صفات ریشه‌ی با صفات مورفولوژیک برگ، توجه به منفی سطح فستوئی در گزینش مقدماتی نهال‌ها جهت انتخاب از نهالستان به عرضه‌ی جنگل‌کاری، به منظور افزایش میزان رشد و تولید چوب دارای اهمیت می‌باشد.

واژه‌های کلیدی: افرا پلت، رگرسیون، صفحات برگ، مورفولوژی برگ، سطح فستوئی

مقدمه
گنج‌ها از جمله مواد غذایی، مصنوعات چوبی، محصولات کاغذی، حفظ آب و توزیع آبیاری و جلوگیری از فرسایش خاک به کمک ماهی آتومیسم‌های طبیعی ایفا می‌شود. نیازمندی نیازمندی

1. دانشجوی سایر کارشناسی ارشد جنگل‌داری (در حال حاضر دانشجوی دکتری)، دانشگاه منابع طبیعی، دانشگاه تربیت مدرس، تهران
2. استادیار دانشکده منابع طبیعی، دانشگاه تربیت مدرس، تهران
3. عضو هیئت علمی مرکز تحقیقات کشاورزی و منابع طبیعی استان مازندران، ساری
hamed_seraj20@yahoo.com

* مسئول مکاتبات، پست الکترونیکی:
مواد و روش‌ها
الف) مواد
1. تحقیق انجام شده در نهالستان کوهستانی اوری میلک سنگدک (1550 متر ارتفاع از سطح دریا) 40 اصله نهال از بین 270 اصله نهال کاشته شده از پنج گونه با طرح اندازه‌گیری کاملاً تصادفی (11 کرت در سه بلک) به صورت تصادفی انجام شد. برای اندازه‌گیری ارتفاع و قطر پهن نهالها از دقت میلی‌متر اندازه‌گیری شد. بعد از کفت بر کردن نهالها (نواحی شهریور)، ساقه و برگ آنها در آن دوره و در دو دوره 45 و 136 ساقه و برگ به 48 ساعت (15 و 47 سنتی‌متر) بستر به‌طور دستکاری شده، در انتهای سطح تولید برگ تعیین و سرپرستی آنها به عنوان میانگین برگ آن نهال در نظر گرفته شود. یکی از نوشتارهای دیگری که در ایران وجود دارد، در فصل پستوزی، بزرگترین هر نهال تیزی بین ضرر تعداد کل برگ هر نهال در میانگین میانگین برگ آن نهال بوده. سپس این میانگین برگ یک برگ هر نهال تیزی از تخمین میانگین میانگین برگ میانگین برگ از هر نهال بر میانگین وزن خشک آن تعیین شد.

2. مشخصات اقلیمی نهالستان مورد تحقیق
تحقیق در نهالستان اوریلمک شرکت سهامی چوب فرم انجام شد. نهالستان مادرک مساحت 15 هکتار در 30 کیلومتر جنوب شهر بل سیف، در ارتفاع 1500 متری از سطح دریا واقع شده است. شیپ آن میلیو و جهت آن شمالی، سنگ مادرآکه و داک آنسوی جنگل است. بر اساس اطلاعات سالهای اسنادی، بی‌پردازی متوسط برابر(S) سنگ و نهالستان 876 میلی‌متر (حداقل و حداکثر سالانه(M) با میانگین 245/5 و 145/5 میلی‌متر) بیشتر از سبک است. برای ساخت یک برگ به‌طور متوسط 2/6 درصد بیشتر دارد. در نهالستان مادرک متوسط دمای سالانه حدود 9 درجه سانتی‌گراد، حداقل و حداکثر

علمی، اقدام به بهره‌کمی و کیفیت گونه‌های جنگلی و افزایش بهره‌وری از جنگل به‌خخصوص افزایش تولید چوب و نهال، جهت رفع نیازهای صنعتی چوب و کاغذ نمود. در این راستا یکی از مهم‌ترین عوامل جهت نیت به اهداف یافته، شامل عوامل مؤثر در آمار و تولید در واحد سطح می‌باشد. در شمار ایران افا برگ مادرک است. جهت عملیاء از سطح جنگل کاری‌ها را به خود اختصاص داده است و لذا انجام مطالعات اصلاحیه‌ای را این گونه جهت تولید پایداری باشد تبیین و سریع تر و نیاز تولید چوب به کیفیت تر ضرورت می‌باشد. یکی از اجزای مهم تولید چوب به خصوص مورد آراوهی برگ سطح برگ می‌باشد. در این زمینه، مورد آراوهی سبب ضعیف نواحی اصلاحیه‌ای ناکافی که است. بلورها و اریکسون (22) در بررسی میزان رشد و زیستگی گونه شاه بلوط (Castanea sativa) به نتیجه رسیدند که میزان رشد و زیستگی در ارتفاع نگرانی با موارد فتوسیستی برگ می‌باشد. چنان (10) گزارش کرد که مهم‌ترین عامل در ایجاد اختلاف در میزان تولید برگ و نهالگونه عنبرسیانل (Sweet gum) مورد بررسی گردید. طی این تحقیق در سطح برگ می‌تواند به توجه به 90 درصد تغییرات در تولید برگ را توجه نماید. از طرف دیگر هزارا و ترپیئی (18) گزارش کردند که نهال‌های جمعیت‌هایی که دارای زن برگ ویس مساحت برگ پیشتری بودند و نقش زیستی و تولید می‌نمایند. برخی نگارنده از محققین نیز وجود ارتباط مثبت بین تعداد استوامت در سطح برگ و نهال فتوسیستی را به میزان رشد نهال گزارش نمودند. (9.7، 9.18 و 9.19).

با توجه به موارد فوق تحقیق حاضر به نظر دارد تا با تغییر مدل‌های جهت پیش‌بینی رشد نهال افا براساس صفات مورفولوژی‌کی برگ، اهمیتی به‌کارگیری این صفات را در گویی
مقامات نهال‌هایی که برای انقلاب از نهالستان به‌صورت جنگل کاری در نظر گرفته می‌شوند. جهت افزایش میزان رشد و تولید چوب مشخص نماید.
راپطه رشد پوسته‌ای بر گرا (Acer velutinum Boiss)

1. تعیین همبستگی بین صفای مورفولوژیک اوایل مرحله جهت تعیین مدل‌های رشد و ردیوی بر اساس صفای مورفولوژیک برگ، به‌مدت آوردن میزان همبستگی بین متغیرها و مشخص تعداد معناداری ارتباط بین آنها می‌باشند (2). لذا ابیا اهمیت استفاده از روش همبستگی با پرسون شام وجود روابط خفی بین متغیرها، پارامتریک بودن داده‌ها و عدم وجود داده‌های تصادفی سخت در آزمون همبستگی اسپیرومن استفاده گردد.

2. تعیین روابط بین متغیرهای مستقل و واابسته جهت تعیین ارتباط بین متغیرهای مستقل و واابسته از آزمون ارتباط رگرسیون دو دندان متغیرهای استفاده گردید در این مرحله همان‌طور که ذکر شد و با استفاده از آزمون کولموگروف- اسمیرنوف انجام شد. نمود ارتباط بین متغیرهای مستقل و واابسته از آزمون همبستگی اسپیرومن استفاده گردد.

3. توزیع مدل همبستگی آزمون همبستگی واریانس خطایی از طریق تحلیل واریانس معناداری از آزمون همبستگی اسپیرومن استفاده گردید در این مرحله براکش پیک و ناحیه دقیق مقدار انجام شد. نمود ارتباط بین متغیرهای معناداری از طریق تحلیل واریانس معناداری از آزمون همبستگی اسپیرومن استفاده گردد.

4. دامپین– واستون قابل قبول است.

5. تحلیل تاکتا پرت با استفاده از آماره Cassee diagnostics

6. شد. تاکتا که در محصول سه برای احراز میزان قرار نگرفته.

پرت تحقیق داده می‌شود.

بعد از تایید تمامی فرضیه‌ها فوق اقدام به تعیین رابطه انجام
جدول 1. همبستگی (r) بین صفات مورد مطالعه

<table>
<thead>
<tr>
<th>صفات فوتوسنتزی</th>
<th>وزن برگ</th>
<th>سطح فوتوسنتزی</th>
<th>مساحت برگ به وزن برگ</th>
<th>تعداد برگ</th>
<th>صفات روانی</th>
</tr>
</thead>
<tbody>
<tr>
<td>فطر نهال</td>
<td>.75**</td>
<td>.71*</td>
<td>.66**</td>
<td>.72*</td>
<td>.47</td>
</tr>
<tr>
<td>ارتفاع نهال</td>
<td>.79**</td>
<td>.75**</td>
<td>.70**</td>
<td>.76**</td>
<td>.52</td>
</tr>
<tr>
<td>زی توجه سافه</td>
<td>.84**</td>
<td>.80**</td>
<td>.75**</td>
<td>.81**</td>
<td>.56</td>
</tr>
<tr>
<td>زی توجه کل</td>
<td>.83**</td>
<td>.79**</td>
<td>.74**</td>
<td>.80**</td>
<td>.55</td>
</tr>
</tbody>
</table>

* 70/0 معيار را نشان می‌دهد. ** 70/5 معيار را نشان می‌دهد.

حاکی از آن که به بررسی ارتباطی با سطح فوتوسنتز و تعداد برگ و نسبت بین رشد قطعی با وزن برگ همبستگی معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و قوانین مناسب تخمین و همبستگی با وزن برگ و سطح فوتوسنتزی نیز ارتباط معنی‌دار می‌باشد و C. 1987

$$H = -2E^{-0.5} (PA)^3 + 0.0559 (PA) + 11.95$$
رابطه رشد نهال انثریا برت (Acer velutinum Boiss)

جدول ۲: انالیز واریانس پیشبینی میزان رشد از ارتفاع بر اساس سطح فتوسنتزی نهال

<table>
<thead>
<tr>
<th>P</th>
<th>F</th>
<th>میانگین مرتعات</th>
<th>مجموع مرتعات</th>
<th>درجه آزادی</th>
<th>رگرسیون</th>
<th>باقی مانده</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>152/32</td>
<td>۶۵۰/۲</td>
<td>۸۲۱/۲</td>
<td>۲</td>
<td>۵۸</td>
<td></td>
</tr>
<tr>
<td>0.074</td>
<td>۲۰/۳۴</td>
<td>۱۷۲۹/۱</td>
<td>۵۸</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۱: دیاگرام پراکنش ارتفاع بر اساس سطح فتوسنتزی نهال

Brand: E-۵۰ می‌باشد.

ارتفاع نهال: PA سطح فتوسنتزی: ۱۰-۰۵ می‌باشد.

در پایان یک ارتیبه تشخیص گردیده بلند و در پایان یک مدل بهره شده.

داده‌های پردازش مورد نمودار پراکنش داده‌ها ترسیم و

بهترین منحنی برای پراکنش یافته بر داده‌ها مدل

تشخیص داده شد (شکل ۱).

همچنین با انجام آزمون ضریب (۰.۰۵) که فاصله بیشتر

حرکت واپسینی بر اساس سطح فتوسنتزی معترض، تعدادی رابطه به

دست آمده که نهال در دسته از تمامی مدل‌های اجرایی شده از

شرایط تأیید یک مدل مناسب برخورد روند.

مدل دوم

پیش‌بینی ارتفاع نهال بر اساس سطح فتوسنتزی و

تعداد برگ می‌باشد که در زیر ارائه می‌گردد.

H = ۴۳.۹۳۲ + ۰.۰۴۹(P.A) + (-۲.۲۳۴* L.N)

ارتفاع نهال: PA سطح فتوسنتزی: L.N تعداد برگ: H

می‌باشد.

مدل سوم

پیش‌بینی زیتون ساقه هر نهال بر اساس وزن برگ، سطح

فتوسنتزی و تعداد برگ آن:

W.S = ۱.۳۴۵ + ۵.۲۴(W.L) + ۰.۰۰۴(P.A) + (-۰.۲*(L.N))
جدول 3: ضریب تنبیه و خطای تخمین مدل‌های پیش‌بینی ارتفاع هر نهال بر اساس سطح فتوسنتزی (مدل 1) و سطح فتوسنتزی و تعداد برگ آن (مدل 2)

<table>
<thead>
<tr>
<th>مدل</th>
<th>ضریب همبستگی</th>
<th>ضریب تنبیه</th>
<th>احراز معنی ضریب تنبیه</th>
<th>مدل</th>
<th>ضریب تنبیه</th>
<th>احراز معنی ضریب تنبیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/87</td>
<td>0/87</td>
<td>0/42</td>
<td>2</td>
<td>0/92</td>
<td>0/92</td>
</tr>
<tr>
<td>2</td>
<td>0/89</td>
<td>0/89</td>
<td>0/58</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

مدل 1: پیش‌بینی ارتفاع هر نهال بر اساس سطح فتوسنتزی
مدل 2: پیش‌بینی ارتفاع هر نهال بر اساس سطح فتوسنتزی و تعداد برگ آن

جدول 4: آنالیز رگرسیون پیش‌بینی ارتفاع بر اساس سطح فتوسنتزی و تعداد برگ آن

<table>
<thead>
<tr>
<th>ف (F)</th>
<th>تعداد مقادیر مربوط</th>
<th>مجموع رتبه</th>
<th>درجه آزادی</th>
<th>درجه آزادی</th>
<th>درجه آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>24/74</td>
<td>4/92</td>
<td>1/18</td>
<td>1/18</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>31/63</td>
<td>9/63</td>
<td>0/61</td>
<td>0/61</td>
</tr>
<tr>
<td>1/02</td>
<td>3</td>
<td>6/66</td>
<td>0/66</td>
<td>0/79</td>
<td>0/79</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>31/63</td>
<td>9/63</td>
<td>1/18</td>
<td>1/18</td>
</tr>
</tbody>
</table>

جدول 5: ضریب تنبیه و خطای تخمین مدل‌های پیش‌بینی زی توده ساقه بر اساس وزن برگ (مدل 1) و وزن برگ و سطح فتوسنتزی و تعداد برگ آن (مدل 2)

<table>
<thead>
<tr>
<th>مدل</th>
<th>ضریب همبستگی</th>
<th>ضریب تنبیه</th>
<th>احراز معنی ضریب تنبیه</th>
<th>مدل</th>
<th>ضریب تنبیه</th>
<th>احراز معنی ضریب تنبیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/87</td>
<td>0/87</td>
<td>0/42</td>
<td>2</td>
<td>0/92</td>
<td>0/92</td>
</tr>
<tr>
<td>2</td>
<td>0/89</td>
<td>0/89</td>
<td>0/58</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

اضافه نمودن سطح فتوسنتزی به مدل اولیه ضریب کارایی از 0/48 به 0/61 و در مرحله سوم با اضافه نمودن تعداد برگ از 0/64 به 0/66 در مدل نهایی بوده فاوت (جدول 6). نتایج آنالیز رگرسیونی نیز معنی‌دار بودن مدل فاوت را تایید نمود (جدول 6). در نهایت مدل بعدی آمده به دلیل برخورد خاص از تمامی شرایط پذیرش

برای تعیین این مدل نیز، از تکنیک رگرسیون گام به گام استفاده شد. طوری که در مرحله اول که تعداد و رتبه برگ انتخاب گردیده بود ضریب کارایی 0/48 لایه در مرحله دوم با

** در سطح 0/05 معنی‌دار است.
بحث و نتیجه‌گیری

نتایج بررسی هیپستگی بین صفات تنان مده ده که وزن برگ و سطح فوتونی بر روی نسبت مثبت و معنی‌داری با میزان رشد ارتفاع نهال و همچنین زی توده ساقه هم‌بستگی معنی‌داری دارد. این مسئله که میزان رشد ارتفاع و زی توده ساقه نهال تحت تأثیر صفات مورفولوژیکی برگ و تغییرات آن می‌باشد، توسط بسیاری از محققین نیز گزارش شده است و (21) نیز تغییرات ساقه نهال بر میزان رشد ارتفاع نهالها و تولید زی توده ساقه نهالها مؤثر بوده. بنابراین دیگر می‌توان گفت که با افزایش تعداد برگ، سطح فوتونی در برخی از این گونه‌ها معنی‌دار است و تأثیر مثبت بر سطح فوتونی بوده که با توجه به نتایج جدول (1) می‌توان بیان نمود که تعداد برگ نیز باعث می‌گردد مؤثر بوده افزایش میزان رشد ارتفاع نهالها و تولید زی توده ساقه نهال‌ها.

روش و جذب گاز کردنی بیشتری (می‌باشد) (21) در صورت انتقال بین میزان رشد ارتفاع نهالها بین صفات مورفولوژیکی برگ (مقدار ول و دوم) به حاکی از انتقال هیپستگی بین میزان رشد ارتفاع نهال سطح فوتونی نهال‌ها می‌باشد. به‌نظر می‌رسد عملیات بالا بودن میزان رشد ارتفاع نهال‌ها که درای سطح فوتونی بیشتری می‌باشد، به‌دلیل پتانسیل بالاتر آنها برای نتایج کمترین فوتونی دریافت نورد و جذب گاز کردنی بیشتری (می‌باشد) (21).

همچنین نتایج تغییر مدل پیش‌نهیز میزان زی توده ساقه بر اساس صفات مورفولوژیکی ببرک (سومین مدل) حاکی از منافذ بودن میزان زی توده ساقه از صفات مورفولوژیکی ببرک به‌طور مبهم و وزن برگ و سطح فوتونی می‌باشد. چنانچه (21) مهم‌ترین عامل در ایجاد اختلاف در میزان تولید زی توده ساقه گونه‌های خیرستمی بکار را در تفاوت بین خصوصیات مورفولوژیکی ببرک Sweetgum

کی مدل. مورد تأیید، قرار گرفت.
منابع مورد استفاده

1. شریفی، م. 1372. ارزیابی روان‌بندی ناشی از پارسالگی در دو هوازه از رودخانه‌های مازندران. پایان نامه کارشناسی ارشد. دانشگاه کشاورزی، دانشگاه تهران.
2. فرشادفر، ع. 1382. طرح‌های آماری در کشاورزی. انتشارات دانشگاه آزاد اسلامی.
3. کریمی، م. و. عزیزی (ترجیح). 1373. آنالیز‌های رشد کهکان زراعی انتشارات جهاد دانشگاهی مشهد.
4. کوچکی، ع. م. ح. راشد محصص، م. نصیری، و. ر. صدر آبادی (ترجیح). 1374. مبانی فیزیولوژیکی رشد و نمو کهکان زراعی.
5. جاب سوم. انتشارات دانشگاه امام رضا، مشهد.
6. هدودی، م. 1377. هیدرولوژی کاربردی. جلد دوم. چاب سوم. انتشارات دانشگاه تهران.