اثر متقابل نیتروزون و بور بر رشد و غلظت نیتروزون و بور در برنج

هادی کوهکن۱، صنجه مفتوح۲ و حجی امام۲

(تاریخ دریافت: ۱۳۸۷/۰۶/۲۰، تاریخ پذیرش: ۱۳۸۷/۰۸/۲۵)

چکیده
نیتروزون معمولاً در زمین‌های زراعی و غیروزایی ایران به‌عنوان بودن ماده آهن کالی در خاک کم است. از طرف دیگر سمیت بور هم‌نامه در مناطق خشک و نیمه‌خشک باید کشور جایی که خاک‌ها از آبی‌های آبیاری حاوی میزان نسبتاً بالایی از این عنصر هستند، شناخت است. تحقیقات نشان می‌دهد که افزودن بخش‌هایی از سوخت طراحی نیتروزون نسبت به سطح باین در خاک کاهش می‌دهد. جهت بررسی به‌همکنش بور و نیتروزون بر رشد و تکثیر دریافتی برای افزایش غلظت کل فاکتوریل در سطح کلی شخصی با شکل بسیار کاهش بور و نیتروزون در سطح باین آن کاهش یافته است. کلینکس افزودن بور غلظت بور و نیتروزون را در سطح سه‌وایی بیشینه کاهش داد. مصرف نیتروزون غلظت نیتروزون را افزایش و غلظت بور در گاه کاهش داد. غلظت کل فاکتوریل و غلظت کلرو‌فلور اندوزه‌گیری شده به روش شیمیایی و افزایش قرار آن نسبت به سوخت طراحی گزارش شد. غلظت کلرو‌فلوریک سطح بور کاهش یافته و افزودن نیتروزون غلظت کلرو‌فلوریک را افزایش و تأثیر سطح باین بیشتر از با افزایش بود. نتایج این پژوهش نشان می‌دهد که در خاک‌های با بور بالا، کاربرد نیتروزون با کاهش اثرات سوخت بیور رشد برنج را افزایش می‌دهد.

واژه‌های کلیدی: نیتروزون، سمیت بور، برنج، نسب کلمی بیور و پتانسیم بیور

مقدمه
نیتروزون یکی از عناصر بر مصرف گیاه‌های بوده که میزان مصرف آن بسیار بالا است. لذا کمیت آن تا در برخی خاک‌های بی‌ماده آنی با میزان می‌شود (۱۶). غلظت نیتروزون لازم برای رشد مطلوب براساس جنس گیاه، مرحله رشد و اندام گیاه بین ۲ تا ۵ درصد وزن خشک کیلوگرم غذای منجر می‌گردد (۲۲). بی‌بی‌هو (HbO۲) وجود دارد. شکل

۲۵ میلی‌گرم در کیلوگرم باشد. کمبود و اگر بیشتر از ۲۰۰ میلی‌گرم در گیاه‌ها به‌عنوان مصرف هم‌نامه است (۱۵). برای این دلیل طراحی نیتروزون نیاز به ۲۰۰ کیلوگرم در هکتار کردند که کاربرد نیتروزون ۲۵۰ هاری و همکاران (۱۶) میزان مرحله رشد و اندام گیاه که مرحله رشد و اندام گیاه بین ۲ تا ۵ درصد وزن خشک کیلوگرام غذای منجر می‌گردد (۲۲).

۱. به ترتیب دانشجوی سابق کارشناسی ارشد و استاد علوم خاک، دانشکده کشاورزی، دانشگاه شیراز
۲. استاد زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شیراز
Koohkan_7001@yahoo.com

* مسئول مکان‌سپت الکترونیکی

۱۷۱
کیلوگرم نیترزون در هکتار با انفعال وزن دانه و تعداد خوش‌های بزرگ در واحد سطح هزارا بوده و عملکرد دانه را تا ۱۲۲ درصد افزایش داده است. گوییتا و همکاران (۱۲) به طوله در یک خاک اسیدی نشان دادند حداکثر عملکرد جو و گندم بهترین رنگ سطح ۵۰۰ و میلی‌گرم نیترزون در کیلوگرم خاک بدون توجه به سطح بور به‌دست آمد است. اینکه گزارش کردن اگر خلأ در مرحله خلاف رفت و اندام هواپیمای جو و گندم به ترتیب بیشتر از ۱۲ و ۱۶ میلی‌گرم بور در کیلوگرم شیاهان دچار برگ سخنگویی در نخور برگ‌ها شده و اضافه کردن حداقل ۵۰ میلی‌گرم نیترزون در کیلوگرم خاک سمیت بور را کاهش داد.

سیاسی‌ها و مکانی‌ها

خاک مورد آزمایش از اقل سطح (۲۰–۳۰ سانتی‌متر) سری را مورد بررسی قرار داده که داشته‌اند. این‌جوده‌های خاک‌های باران‌زا در سطح بور (Brown soils) (fine, mixed, mesic, Fluventic Haploxerepts) یکی از خاک‌های جوده‌ای بوده و مواردی از اکسکوپنوسیمی خاک (جدول ۱).

جست بررسی تاثیر بور و نیترزون بر بالانت رها یک سنجش خاک بزرگ از سطح بور (۵، ۰، ۲، ۰، ۲۰ و ۴۰ میلی‌گرم در هکتار) به‌طور اسیدی بی‌پی‌زدی و پی‌زدی مقدار نیترزون (کیلوگرم خاک) به‌صورت اسیدی بی‌پی‌زدی به بورسم باران‌زای داشته که بی‌پی‌زدی از مقدار نیترزون در و بوش نیترزون کردن. گل‌ها به کاهش دیده خاک‌ها اضافه گردید. توصیه از سطح بور نیترزون از کشت بذر و نصف دیگر چهار هفته پس از کشت به‌صورت سری مورد استفاده قرار گرفت. آزمایش به‌صورت فاکتوریل (۴×۴) در قالب طرح چهار کامال اتفاقی بست که ۲۰ درصد انجام شد. مقدار مورد نیاز فسفور، آهن، مسکن، روش و روش‌های تزریق خاک عظیم یکستان و کل از کشت بور محصول به ترتیب از منابع متنوع و (Fe-EDDA) و سولفات‌های مانند، روش و

بی‌پی‌زدی بلند به‌صورت یک‌درصد در عمق ۲ تا ۳ سانتی‌متری خاک در برابر تحقیق قرار داشت در علم و فنون کشاورزی و منابع طبیعی / سال دوازدهم / شماره چهل و چهارم / تابستان ۱۳۸۸
جدول 1. برخی از ویژگی‌های فیزیکی و شیمیایی خاک مورد آزمایش

<table>
<thead>
<tr>
<th>مقادیر</th>
<th>ویژگی خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>رس (درصد)</td>
</tr>
<tr>
<td>24</td>
<td>سیلت (درصد)</td>
</tr>
<tr>
<td>7/3</td>
<td>pH (در خشکی اشباع)</td>
</tr>
<tr>
<td>6/45</td>
<td>قابلیت هدایت الکتریکی در عصاره اشباع خاک (دست زیمنس بر متر)</td>
</tr>
<tr>
<td>0/55</td>
<td>ماده آلی (درصد)</td>
</tr>
<tr>
<td>6/51</td>
<td>نیترژن کل (درصد)</td>
</tr>
<tr>
<td>6/4</td>
<td>کربنات کلسیم معادل (درصد)</td>
</tr>
<tr>
<td>11</td>
<td>ظرفیت تبادل کاتیونی (سانتی‌مول بر گرم خاک)</td>
</tr>
<tr>
<td>0/34</td>
<td>پر استخراج شده با آب غلظت میکروگرمسیون (میکروگرم در گرم خاک)</td>
</tr>
<tr>
<td>9/4</td>
<td>فسر استخراج شده به وسیله پی کربنات سدیم (میکروگرم در گرم خاک)</td>
</tr>
<tr>
<td>3/91</td>
<td>پناسیم قابل استخراج به وسیله استات آمونیوم (میکروگرم در گرم خاک)</td>
</tr>
<tr>
<td>0/45</td>
<td>آهن استخراج شده به وسیله دی-تی-سی (میکروگرم در گرم خاک)</td>
</tr>
<tr>
<td>5/6</td>
<td>مانگ استخراج شده به وسیله دی-تی-سی (میکروگرم در گرم خاک)</td>
</tr>
<tr>
<td>0/6</td>
<td>روی استخراج شده به وسیله دی-تی-سی (میکروگرم در گرم خاک)</td>
</tr>
<tr>
<td>2/3</td>
<td>مس استخراج شده به وسیله دی-تی-سی (میکروگرم در گرم خاک)</td>
</tr>
</tbody>
</table>

محاسبه‌های می‌کنیم. یک گرم از نمونه گیاهی به مدت 4 ساعت در دمای 55 درجه سانتی‌گراد به خاکستر تبدیل و سپس به وسیله اسید کلریدیک 2 نرمال عصاره کرده شد. نیترژن کل به روش میکروکلدل (7) و غلظت بور به روش آزمون‌های (9) H تعیین گردید.

MSTATC داده‌های جمع‌آوری شده با استفاده از برنامه و با کارگیری آزمون F و تیز معادله‌های رگرسیون مورد تجزیه و تحلیل قرار گرفت. نمودارهای مناسب با استفاده از نرم‌افزار Excel و نتایج تفسیر و توصیه‌های لازم ارائه شد.

نتایج و بحث

روی کیفیت و شاخص برنج

اثرات اصلی و متقابل بور و نیترژن بر وزن خشک شاخص برنج کاشت شد و دو هفته پس از کاشت تعداد بیوتها به 5 عدد در هر گلدان تقیی یافت. سپس گلدان‌ها را غرفه کرده به طوری که تا پایان دوره رشد، ارتفاع آب از سطح خاک تقریباً 3 سانتی‌متر باقی ماند.

حدود ماه پس از کاشت، 3 بیوت برنج از هر گلدان از محل طبقه قطع شده و سپس از شستشو با آب مغذربه مدت 24 ساعت در دمای 75-85 درجه سانتی‌گراد خشک گردد. ضمناً قبل از برداشت، به وسیله کروفیل متر (SPAD-502) از برگ‌های جوان دوم، سوم و چهارم هر بیوت اعداد کروفیل متر قرنطین شد و از هر ببرگ سه قرنطین صورت گرفت. همچنین جهت اندام‌های قلبی غلظت کروفیل به روش آرنون (4)، ببرگ زایه گیاه را در استن 80 درصد به سوی سایه‌سوز و سپس سانتریفیوژ می‌کنیم و محیط زال روی را جدا کرده و میزان جاذب طول مرکزها 2/63 و توسط دستگاه اسپکتروفوتومتر فرانت می‌کنیم و سپس میزان کروفیل کل را

173
کاهش داده است. این پژوهشگران بیان کردن که مصرف نیتروژن
در کاهش سمیت بور می‌یابد است.

غلظت و جذب بور
مصرف نیتروژن در غیاب بور، با آفیش غلتگی بور در شاخ‌ساز برخی همراه شده است. تحقیق مشابه توسط نوبیوا و مولها (۲۶) گزارش شده است. کاربرد نیتروژن در سایر سطوح بور، سبب کاهش غلتگی بور گردیده است. همان‌طور که در جدول ۲ دیده می‌شود کمترین وزن خشک در تیمار صفر (N₂) نیتروژن و مصرف ۱۰ میلی‌گرم بور در کیلوگرم خاک به‌دست آمده‌برابر به ۱۷/۶ گرم در گل‌دان‌می باشد. کاربرد
نیتروژن با مصرف و بدون مصرف بور و وزن خشک شاخ‌ساز را افزایش داد و بیشترین وزن خشک در غیاب بور و کاربرد ۱۵۰ میلی‌گرم نیتروژن در کیلوگرم خاک (N₂150) مشاهده شد که حدود ۲ برابر شاهد می‌باشد. در این پژوهش، در سطح‌های باین بور (تا سطح ۱۰ میلی‌گرم در کیلوگرم خاک)، مصرف نیتروژن از تاثیر سوء بور وزن خشک جل‌گری نمود اما این نقش مثبت نیتروژن در سطح‌های بی‌بور (۰ تا ۵۰ میلی‌گرم بور در کیلوگرم خاک) چندان شنیده نیست.

گازگ و همکاران (۱۵) مشاهده کرده‌اند که در کشت‌های شنی با محلول غذایی حاوی ۵ تا ۷ گرم کربن در لیتر (عمرکرد برون در سطح پایین بور (۱ و ۵/۵ میلی‌گرم در لیتر) افزایش و در سطح بالای بور (۵ میلی‌گرم در لیتر) کاهش یافته است. این نتایج نشان می‌دهد که افزایش عمکرکد سطح پایین بور بهدلیل نقش این عنصر در باقی‌گری، نقل و انتقال قند و مواد حاصله از فتوسترات و آفیشی فعالیت آنزیمی بوده و اثر منفی غلتگی بالای بور به‌دلیل شناسایی نشده. کاهش فعالیت آنزیمی در سلول و صدای به پروپلی‌سام می‌باشد که بدون ترتیب بر انتقال و قابلیت استفاده نزدیک و مواد حاصل از فتوسترات نیاز دارد.

کومار و همکاران (۵) نشان دادند که وزن خشک برون در تیمار ۱۵۰ کیلوگرم نیتروژن در هکتاژ ۴۱ درصد به‌طور غیرا فیشی است. سنت کارولین بر روی نشیب سبب شده‌است. افزایش افزایش نشان داده است. گونا و همکاران (۱۲) در یک مطالعه گل‌خانه‌ای در دو گیاه کندمو و جو در یک باقی‌گری باقی‌گری مشاهده کرده که کاربرد ۱۰ و ۵/۵ میلی‌گرم بور در کیلوگرم خاک به‌تون مصرف نیتروژن گیاه آفیشی اما جذاب و سمیت بور در کیلوگرم خاک عمکرکد گیاه آفیشی اما جذاب و سمیت بور

۱۷۴
جدول 2. تأثیر بور و نیتروژن بر وزن خشک شاخ‌ساز بрож

<table>
<thead>
<tr>
<th>بور (میلی‌گرم در کیلوگرم)</th>
<th>نیتروژن (میلی‌گرم در کیلوگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td></td>
</tr>
<tr>
<td>2/22</td>
<td>0/05</td>
</tr>
<tr>
<td>2/44</td>
<td>2/37</td>
</tr>
<tr>
<td>2/48</td>
<td>2/66</td>
</tr>
<tr>
<td>2/85</td>
<td>3/08</td>
</tr>
<tr>
<td>7/35</td>
<td>10/18</td>
</tr>
<tr>
<td>3/15</td>
<td>2/66</td>
</tr>
<tr>
<td>5/27</td>
<td>7/68</td>
</tr>
<tr>
<td>6/98</td>
<td>9/95</td>
</tr>
<tr>
<td>9/54</td>
<td>12/22</td>
</tr>
<tr>
<td>3/41</td>
<td>2/42</td>
</tr>
<tr>
<td>5/24</td>
<td>7/81</td>
</tr>
<tr>
<td>5/64</td>
<td>7/81</td>
</tr>
<tr>
<td>3/39</td>
<td>5/25</td>
</tr>
<tr>
<td>1/18</td>
<td>5/25</td>
</tr>
<tr>
<td>میانگین</td>
<td></td>
</tr>
</tbody>
</table>

LSD (0/05)

<table>
<thead>
<tr>
<th>N</th>
<th>B</th>
<th>BxN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/28</td>
<td>0/34</td>
<td>0/48</td>
</tr>
</tbody>
</table>

نتایج

ارگ‌هایی روی بور و نیتروژن افزایش داده است و به‌وسیله دلیل مانند نیتروژن به، کاهش وزن خشک شاخ‌ساز بрож در بیشترین غلظت نیتروژن با مصرف 300 میلی‌گرم نیتروژن و 5 میلی‌گرم بور در کیلوگرم خاک (N100B5) مشاهده شد که برای 3/76 درصد است و با حداقل 0/69 درصد مربوط به مصرف بیشینه بور و نیتروژن (NaB2) می‌باشد (جدول 2). از مصرف 300 میلی‌گرم نیتروژن در کیلوگرم خاک غلظت نیتروژن را 0/74 درصد نسبت به خاک بدون نیتروژن در شاخ‌ساز گندم و جو با افزودن بور افزایش می‌یابد و دلیل آن را کاهش عملکرد به علت مصرف بیشینه نیتروژن و اثر غلظت بیشینه نیتروژن است. غلظت و جذب نیتروژن در تما无论 بور و کاربرد نیتروژن موجب افزایش می‌شود. غلظت نیتروژن در کیلوگرم خاک حداکثر 0/40 میلی‌گرم بور در کیلوگرم خاک غلظت نیتروژن شاخ‌ساز بрож
جدول 3 تأثیر بور و نیتروژن بر غلفت و چربی بور توسط شاخ‌ساز برنج

<table>
<thead>
<tr>
<th>بور (میلی‌گرم در کیلوگرم)</th>
<th>نیتروژن (میلی‌گرم در کیلوگرم)</th>
<th>غلفت (میلی‌گرم در کیلوگرم)</th>
<th>چربی (میلی‌گرم در کیلوگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>291</td>
<td>742</td>
<td>299</td>
</tr>
<tr>
<td>0/5</td>
<td>0/24</td>
<td>2/7</td>
<td>2/5</td>
</tr>
<tr>
<td>0/90</td>
<td>0/58</td>
<td>0/7</td>
<td>0/35</td>
</tr>
<tr>
<td>1/03</td>
<td>0/83</td>
<td>1/2</td>
<td>0/7</td>
</tr>
<tr>
<td>1/25</td>
<td>0/32</td>
<td>0/8</td>
<td>0/30</td>
</tr>
<tr>
<td>میانگین</td>
<td>1/10</td>
<td>0/7</td>
<td>0/30</td>
</tr>
</tbody>
</table>

LSD(0/05) (N) 9/4
LSD(0/05) (B) 12/17
LSD(0/05) (NxB) 24/34

با مصرف نیتروژن 2/5 میلی‌گرم در کیلوگرم، خاک و 150 میلی‌گرم بور در کیلوگرم خاک و 150 میلی‌گرم نیتروژن در کیلوگرم خاک (N100B100) مشاهده می‌شد. در همین ارتباط با روش همکاران (5) مشاهده گردید که مصرف خشک‌گیاه و غلفت نیتروژن افزایش حاکم عملکرد افزایش خشک‌گیاه و غلفت نیتروژن می‌باشد. بیشترین چربی نیتروژن

176
جدول 4 تأثیر بور و نیتروژن بر غلظت و جذب نیتروژن توسط شاخه برجن

<table>
<thead>
<tr>
<th>بور مصرفی (ملیه گرم در کیلوگرم)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>5/35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>5/30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>5/25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>5/20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>5/15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>5/10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>5/5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>5/0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
</tr>
</tbody>
</table>

یکی از مثاربیت‌های اصلی وجود نیتروژن در شاخ برجن است.

رابطه قرارن کاروفیل متر دسی با غلظت نیتروژن و غلظت کاروفیل در برج نازه

قرارن کاروفیل متر دسی در محاوره جهت ارائه می‌شود. نیتروژن به حساب آید. نیتروژن بیشترین تأثیر را بر رشد سبزیجات برج را دارد که مربوط به تأثیر آن بر همه جناحی کاروفیل در گیاه است. این بخش می‌تواند به بیانی غلظت کاروفیل در گیاه باشد. (28) به‌طور کلی قرارن کاروفیل معادله ارائه شده در شکل 1 هم‌همیشگی بین قرارن کاروفیل و غلظت نیتروژن در گیاه را نشان می‌دهد.
شكل 1. رابطه بین قرانت کلروفیل متر دستی با غلظت نیتروژن (a) و غلظت کلروفیل در برگ نازه برنج (b)

سخت پروتئین و تشکیل کلروفیلاست و اجرای کلروفیلاست سبب افزایش غلظت کلروفیل می‌شود (21). پیکلیک و فکس (29) در یک آزمایش صحرایی نشان دادند که نیتروژن بر غلظت کلروفیل و اعداد خوانده شده توسط کلروفیل متر تأثیر مثبت دارد. محمد و همکاران (24) نشان دادند که کلروفیل برگ گندم با سطح 440 میلی گرم نیتروژن در

کیلوگرم خاک افزایش یافته است.

در این پژوهش، غلظت کلروفیل با مصرف بور به‌طور معنی‌داری کاهش می‌یابد. به‌طوری‌که بعادل میانگین غلظت کلروفیل در سطح 40 میلی گرم بور در کیلوگرم خاک به‌دست آمده که درصد نسبت به شاهد کاهش نشان می‌دهد (جدول5). غلظت بالایی بور سبب آسیب کلروفیلاست در

\[y = 0.2221x - 4.1451 \]

\[R^2 = 0.67** \]

\[y = 0.0729x + 0.4801 \]

\[R^2 = 0.71** \]
جدول 5. تأثير بور ونیتروژن بر غلظت کارفویل (میلی گرم در گرم بذر نازه برج)

| بور (میلی گرم در کیلوگرم) | نیتروژن (میلی گرم در کیلوگرم) | نیتروژن | مناسب |
|---------------------------|-----------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|

LSD (0/05)

<table>
<thead>
<tr>
<th>0/05</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/5</td>
<td>B</td>
</tr>
<tr>
<td>0/19</td>
<td>NxB</td>
</tr>
</tbody>
</table>

نتیجه‌گیری:

سلول‌های موزویلی برگ می‌شود و به این دلیل غلظت کارفویل در تجربه مصرف بور کاهش می‌یابد (25). کاربرد نیتروژن در هر سطح بور غلظت کارفویل افزایش داد (جدول 5). افزایش نیتروژن هنن به نحو مؤثری تأثیر سوء بور بر غلظت کارفویل را از بین می‌برد. بنابراین موجب تأثیر مناسب غلظت کارفویل شدید است.

حسینی و همکاران (11) کاهش غلظت کارفویل در تجربه افزایش غلظت بور در برج را کاهش دادند. نتایج کناره‌کننده بور سبب کاهش معنی‌دار مقدار کارفویل در برج نیست.

نتیجه‌گیری و پاسخ به بور

نتیجه‌گیری: کلسیم به بور به‌عنوان شاخص مناسب برای بررسی عکس العمل محصولات به بور پیشنهاد شده است. جذب بور به‌وسیله گیاهان به‌طور عحدد تحت تأثیر حضور عناصر غذایی از جمله کلسیم و نیتروژن است (15). در این پژوهش کاربرد بور سبب کاهش معنی‌دار میانگین
جدول 6. تأثیر بور و نیتروژن بر نسبت کلسیم به بور در شاخه برهنگ

<table>
<thead>
<tr>
<th>بور و نیتروژن (میلی گرم در کیلوگرم)</th>
<th>کیلوگرم</th>
<th>0</th>
<th>2/5</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>40</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بور: 70</td>
<td>171</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بور: 60</td>
<td>123</td>
<td>129</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بور: 90/35</td>
<td>178</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بور: 135</td>
<td>356</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بور: 209</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیتروژن: 80/42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیتروژن: 112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیتروژن: 114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD (0/05)</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD (0/05)</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD (0/05)</td>
<td>NxB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 7. تأثیر بور و نیتروژن بر نسبت پتاسیم به بور در شاخه برهنگ

<table>
<thead>
<tr>
<th>بور و نیتروژن (میلی گرم در کیلوگرم)</th>
<th>کیلوگرم</th>
<th>0</th>
<th>2/5</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>40</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بور: 70</td>
<td>221</td>
<td>70/8</td>
<td>114</td>
<td>190</td>
<td>235</td>
<td>333</td>
<td>978</td>
<td>0</td>
</tr>
<tr>
<td>بور: 60</td>
<td>274</td>
<td>92/2</td>
<td>131</td>
<td>140</td>
<td>253</td>
<td>318</td>
<td>770</td>
<td>75</td>
</tr>
<tr>
<td>بور: 90/35</td>
<td>267</td>
<td>128</td>
<td>152</td>
<td>310</td>
<td>361</td>
<td>505</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>بور: 135</td>
<td>373</td>
<td>147</td>
<td>172</td>
<td>379</td>
<td>575</td>
<td>703</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>بور: 209</td>
<td></td>
<td>114</td>
<td>142</td>
<td>287</td>
<td>397</td>
<td>739</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیتروژن: 80/42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیتروژن: 112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیتروژن: 114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD (0/05)</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD (0/05)</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD (0/05)</td>
<td>BxN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ملاحظه‌ای که باید تا به ۱۹۶۶ تکنیک بهبود یافته بیش از ۲۲۴ گزارش کردند.

به‌معنی حصول به عملکرد بهبود‌یافته بین ۲۱۸ تا ۱۹۶۶ بیش از ۲۲۴ گزارش کردند.

۱. همان‌طور که از جدول ۲ مشاهده می‌شود در هر سطح نیتروژن افزایش کویر نسبت به بار نیتروژن بر می‌باشد. در بنابراین روند بار نیتروژن به سبب افزایش غلظت نسبت بار نیتروژن در یکی نمود. ویل مقدار افزایش بار بیشتر از افزایش نسبت است. نشان‌هایی هست که مقدار بار به‌صورت کمتر و نیتروژن در نوک و حاشیه کرب در بیوتیلیک به نسبت به بار کمتر از ۲۸۶ به‌طور محسوس نگه‌دارند. نسبت به بار کشاده‌است و علت آن تأثیر نیتروژن بر وزن خشک و اثرات مسکان و همکاران (۲۳) کاهش جذب بار نیتروژن را گزارش کرده و دلیل این امر محققان افزایش تبادل کاناتیون هیدروژن و جذب تری‌جیکسی بی‌رنگی در فضایی در مقایسه با یک ظرفیتی می‌دانند.

نتیجه‌گیری

غلظت بور در فانت‌گاه بی‌رنگ در سطوح بالایی مصرف بور در حد سبیع بوده به‌طوری که عملکرد ماده خشک به‌طور قابل‌توجه بوده است.

منابع مورد استفاده

۱. حسینی، س. م. م. مفتون، ن. ع. کربنیان، ع. م. رونفی و ه. آمام. ۱۳۶۳. تأثیر سولفات بور بر مقاومت به سبیع بور در درخت. مجله علوم خاک و آب. ۱۳۶۳: ۱۳۳-۱۳۵.

۲. صلی، م. ۱۳۶۷. مطالعه زنیتیکی، مورفولوژیکی، ریکتیون‌های طبیعی و طبقه‌بندی خاک‌های باخترهای استان فارس. پایان‌نامه کارشناسی ارشد، دانشگاه شیراز.

۳. ملکتی، م. ج. و. ب. منشور زاده. ۱۳۷۸. تأثیر بار در افزایش گیاه و به‌وسیله کیفیت بار نیتروژن. نشر آموزش کشاورزی. کرخ.