کانی شناسی رسی خاک‌ها در چهار رده‌ی ارضی از مناطق خشک و نیمه‌خشک
و ارتباط آن با سیستم‌های واحدهای فسفر

اعظم جعفری، حسین شریعتمداری، حسن خادمی و پیجی رضائی نژاد

(تاریخ دریافت: ۸۶/۱۲/۱۵، تاریخ پذیرش: ۸۶/۵/۹)

چکیده
کانی‌شناسی به‌عنوان یکی از مهم‌ترین ویژگی‌های خاک بسته به اقلیم و شرایط شیمیایی خاک روی یک شیب از بالا به پایین تغییر می‌کند. تغییرات نژادی ویژگی‌های خاک یکی از عوامل موثر در تشکیل و در تغییرات لیم نفاطی و پیوستگی‌های خاک می‌باشد. تغییرات با هدف بررسی تغییرات کانی‌شناسی در رده‌های ارضی در مناطق خشک و نیمه‌خشک و تأثیر کیفی آن بر واحدهای فسفر خاک مطالعه در چهار رده‌ی ارضی در اصفهان به‌عنوان منطقه خشک و چهار محال و بختیاری به‌عنوان منطقه نیمه‌خشک انجام گرفت. روش یک از روش‌هایی از قسمت‌های بالا، پایین و وسط شیب از خاک جنوبی و شمالی خاک روداها و در اناشیم برداشت شدند. برخی از ویژگی‌های شیمیایی و شیمیایی می‌باشند. رس‌های تاکسی خاک‌ها در وضعیت نسبی واحدهای فسفر مقدار pH و ECEEC در بررسی با توجه به شیب‌ها و اقلیم‌های منطقه. در بررسی قسمت‌های ارضی از وضعیت رده‌ی ارضی باید با توجه به شیب‌ها و اقلیم‌های منطقه شیب‌ها و اقلیم‌های منطقه کاملاً خاص باشد. به همین ترتیب در رده‌ی ارضی از وضعیت رده‌ی ارضی باید با توجه به شیب‌ها و اقلیم‌های منطقه شیب‌ها و اقلیم‌های منطقه کاملاً خاص باشد.

واژه‌های کلیدی: رده‌ی ارضی، واحدهای فسفر، کانی‌شناسی رس

مقدمه
دریافتی در برخی کلیه‌های میزان
کانولنیتا از نتایج مرتغب به طرف دشت افراتویی می‌باشد که
دبی آن شستروی سیستم از قسمت‌های بالا و حرفک به
طرف پایین و تکیه کانولنیتا در قسمت‌های پایین می‌باشد.

مقدار و نوع رس در قسمت‌های مختلف شیب تغییر می‌کند.
نوع رس بسته به اقلیم و فراهم می‌باشد. شرایط‌های مناسب در
مواد مختلف شیب متفاوت است. فاکتور و فاکتور می‌باشد.

1. به ترتیب دانشجوی دکتری و دانشیان خاک‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
Rezainejad@cc.iut.ac.ir

nostel مکاتبات، پست الکترونیکی: *

153
روند تغییرات گیوپسی دفعی، هکسکالولیت بود که علت آن کاهش فعالیت آلومینیوم بر اثر افزایش فعالیت سیلیسیم بوده است. (۷)

ایستوک و هوارود با مطالعه خاک‌های حاوی سراب‌های تیتانیت تیتانیت کربنیک می‌باشد، سراب‌های کربنیک در خاک‌های اراضی قبلاً به دستگاه ضعیف و نهایتاً کربنیک در مبتنی بر دستگاه خوب‌کننده است. (۱۷) همچنین ناترون‌دای (Nontronite) و سایپونیت (Saponite) در میزان‌های زیادی عامل شدن خوب‌کننده می‌باشد. (۱۷) در نتیجه افزایش ضعف آنها در موضوع‌های با دستگاه خوب‌کننده، ناترون‌دای و سایپونیت تعدادی شود. در صورت که سی و Mg به‌راه‌ای که دستگاه خوب‌کننده ضعیف با دستگاه خوب شسته شده در نتیجه ناترون‌دای و سایپونیت توجه نمی‌شود. (۱۷)

حسین و همکاران با مطالعه رایحه‌ای تخم‌انگاری سیلیس علیه نتیجه رسدند که در قسمت پایین شیب و در بالای شیب اینسپی سول تشکیل شده است. نتایج تحلیل FTIR و XRD مطمئن می‌باشد که CEC و (Saponite) برای نگاره‌ای پرهوی اینک نشان داد که از جمله پایین شیب عمدتاً استمکتنته و در بالای بیش کالتونیت و کانی‌های حکاکیتسی-کالیت‌پرا و وجود دارد. زهکشی قسمت‌های بالایی و انتقال عناصر به طرف پایین باعث تشکیل استمکتنته شده است. (۱۶)

با تغییر ویژگی‌های خاک در طول شیب، بازمترهای واجدی فسفر نیز تغییر می‌کند زیرا خاک‌های جذب و واجدی، تحت کنترل ویژگی‌های خاک از جمله مقدار و نوع رس، اسیدهای آهن و آلومینیوم، مقدار ملی، pH و کربنات کلمی‌می‌باشد. (۲۵ و ۳۶) سرعت واکنش فسفر از اجزاء خاک و در نتیجه سرعت آزاد شدن فسفر می‌تواند در فراورده جذب فسفر توسط گیوپسی به کاهش باید نماید. (۲)

کانی‌های رئیسی از ویژگی‌های مهم خاک محصول شده و در

واژدی فسفر خاک نقش پرداخته شده است. (۲۷) در این مطالعه علاوه بر بررسی تغییرات پارامترهای سرعت واجدی فسفر و کانی‌شانسی رئیسی خاک در موضوع‌های مختلف رایحه‌های اراضی به بررسی کیفی تاثیر کانی‌شانسی بر

والاژدی فسفر خاک نقش پرداخته شده است.
مواد و روش‌ها

1. انتخاب مناطق مورد مطالعه و نمونه‌برداری

چهار روش ارضی در استان‌های اصفهان، چهارمحال و بختیاری انتخاب و از خاک‌های موجود روی هر یک از روش‌های اراضی از قسمت‌های بالا و پایین شیب نمونه‌برداری انجام شد. در هر روش ارضی نقاط انتخاب شده که هنگام دارای موارد مانند پاسخندا بودند. نمونه بالا و پایین شیب از خاک روى موارد، نمونه وسط شیب از خاک غیر زراعی و نمونه پایین شیب از خاک زراعی برداشتند. تمام نمونه‌ها از عمق 30 سانتی‌متر بودند. روش‌های ارضی انتخاب‌شده به ترتیب در مناطق شهرستان‌های میان‌که (میان‌که) و سه راه زیار در اطراف اصفهان و مناطق سامان و فرخشیر در استان‌های چهارمحال و بختیاری قرار دارند. برخی از ویژگی‌های فیزیکی و شیمیایی نمونه‌ها اندوزگیری شده که در جدول 1 آرا شده است.

2. تعیین ویژگی‌های فیزیکی و شیمیایی خاک‌ها

تعدادی از ویژگی‌های فیزیکی و شیمیایی نمونه‌ها به شرح زیر اندازه‌گیری شدند: بافت خاک به روش پیت (13)، pH نمونه‌های خاک در تابع 2/5:1 خاک به آب به وسیله میتر pH، قابلیت هدایت الکتریکی عصاره اشباع به وسیله هیدروستاتیک کربنات کلسیم مقدار خاک به روش تیپس رنگ‌بندی با استبدال کلرید‌های رنگ‌بندی تجاری (3)، کربنات کلسیم فعال به روش اکسید گریز در pH آمونیوم (8)، طیف بیانات کانی‌ها به روش استاندارد در (31) و (32)، (32) درصد کربن آلی به روش کاسپی (78)، پردازش مولکول و تبدیلی به روش ایسکروفیکس Ca2+ و Mg2+ مقدار محلول و تبدیلی به روش ایسکروفیکس JBD اتمی و آنیوم محلول در سیلول – 4 کربنات - دی‌توانت (31) تعیین گردید.

کاتیون‌های رسی نمونه‌های خاک

نمونه‌های خاک جهت تعیین کاتیون‌های رسی به روش کیتیک و هوب آماده گردیدن (18) سپس با استفاده پرتو ایکس شیمادزو مدل 610 - XD کاتیون‌های رسی آنها تعیین شد.
جدول 1. برخی ویژگی‌های فیزیکی و شیمیایی خاک‌های مورد مطالعه

<table>
<thead>
<tr>
<th>pH</th>
<th>ECe</th>
<th>CEC</th>
<th>کربن آلی</th>
<th>فسفر-الن</th>
<th>Al-CBD</th>
<th>Fe-CBD</th>
<th>کلیسم معادل</th>
<th>خاک</th>
<th>رس سیل گی</th>
<th>شیمیایی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dS m⁻¹</td>
<td>cmol(+) kg⁻¹</td>
<td>mg kg⁻¹</td>
<td>g kg⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/6</td>
<td>2/1</td>
<td>6/10</td>
<td>4/5</td>
<td>0/44</td>
<td>7/64</td>
<td>63</td>
<td>350</td>
<td>128</td>
<td>J₁⁺</td>
<td></td>
</tr>
<tr>
<td>7/5</td>
<td>3/03</td>
<td>7/6</td>
<td>14</td>
<td>0/23</td>
<td>4/7</td>
<td>5</td>
<td>350</td>
<td>170</td>
<td>J₂</td>
<td></td>
</tr>
<tr>
<td>7/6</td>
<td>1/66</td>
<td>3/8</td>
<td>14</td>
<td>0/59</td>
<td>9/19</td>
<td>43</td>
<td>240</td>
<td>143</td>
<td>Z₁</td>
<td></td>
</tr>
<tr>
<td>7/5</td>
<td>5/37</td>
<td>8</td>
<td>28/5</td>
<td>0/8</td>
<td>9/34</td>
<td>145</td>
<td>240</td>
<td>376</td>
<td>Z₂</td>
<td></td>
</tr>
<tr>
<td>7/6</td>
<td>5/6</td>
<td>9/6</td>
<td>577</td>
<td>1</td>
<td>148</td>
<td>300</td>
<td>231</td>
<td>246</td>
<td>Z₃</td>
<td></td>
</tr>
<tr>
<td>7/5</td>
<td>0/34</td>
<td>7/7</td>
<td>18</td>
<td>0/98</td>
<td>9/21</td>
<td>119</td>
<td>300</td>
<td>449</td>
<td>S₁</td>
<td></td>
</tr>
<tr>
<td>7/5</td>
<td>0/34</td>
<td>7/7</td>
<td>18</td>
<td>0/98</td>
<td>9/21</td>
<td>119</td>
<td>300</td>
<td>449</td>
<td>S₂</td>
<td></td>
</tr>
<tr>
<td>7/5</td>
<td>1/34</td>
<td>3/1</td>
<td>9/4</td>
<td>1/08</td>
<td>7/43</td>
<td>63</td>
<td>310</td>
<td>467</td>
<td>S₃</td>
<td></td>
</tr>
<tr>
<td>7/5</td>
<td>0/34</td>
<td>7</td>
<td>20</td>
<td>0/9</td>
<td>7/59</td>
<td>163</td>
<td>290</td>
<td>373</td>
<td>F₁</td>
<td></td>
</tr>
<tr>
<td>7/5</td>
<td>0/34</td>
<td>7</td>
<td>20</td>
<td>0/9</td>
<td>7/59</td>
<td>163</td>
<td>290</td>
<td>373</td>
<td>F₁</td>
<td></td>
</tr>
<tr>
<td>7/5</td>
<td>0/34</td>
<td>7</td>
<td>20</td>
<td>0/9</td>
<td>7/59</td>
<td>163</td>
<td>290</td>
<td>373</td>
<td>F₁</td>
<td></td>
</tr>
</tbody>
</table>

به ترتیب رنگ‌های قرمز، زیتون، سامان و فروش‌سنگ - 1 و 3 به ترتیب موقتی بالا، وسط و پایین شیب، CBD سبت‌های- یک کربنات-دیتیونات.
جدول 2: فرم خطي و غیرخطی معادلات مورد استفاده جهت تعیین سیبک و اجزای سفر

<table>
<thead>
<tr>
<th>نام معادلات</th>
<th>فرم غیرخطی</th>
<th>فرم خطی</th>
</tr>
</thead>
<tbody>
<tr>
<td>درجه اول</td>
<td>$\frac{dQ_0}{dt} = k(Q_0 - Q_t)$</td>
<td>$\ln Q_0 = \ln Q_t - k_t$</td>
</tr>
<tr>
<td>درجه دوم</td>
<td>$\frac{dQ_0}{dt} = k(Q_0 - Q_t)^2$</td>
<td>$\frac{1}{Q_0} = \frac{1}{Q_t} + k_t$</td>
</tr>
<tr>
<td>ایلوویچ</td>
<td>$\frac{dQ_0}{dt} = aexp(-bQ)$</td>
<td>$Q_t = 1/b\ln(Q_0) + 1/b\ln t$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>معادله</th>
<th>نام معادله</th>
<th>معادله</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار فسفر آزاد شده در زمان t</td>
<td>$QE = Qe + (\mu P g^1)^t$</td>
<td>$Q = \text{مقدار فسفر آزاد شده در زمان}$</td>
</tr>
<tr>
<td>$\text{مقدار فسفر آزاد شده در زمان}$</td>
<td>مقدار فسفر</td>
<td>مقدار فسفر</td>
</tr>
</tbody>
</table>

نتایج و بحث

1. ویژگی‌های فیزیکی-شیمیایی خاک‌های مورد مطالعه

در تمام ریف‌های اراضی مقدار رس، طرفین نتایج کتابیونی، هدایت الکتریکی و پهنا خاک‌ها به طرف پایین شیب افزایش نشان می‌دهد. این مقدار در زمین‌های زراعی در مقایسه با اراضی غیرزراعی دیگر بیشتر است. با توجه به این که اراضی زراعی در ناحیه پایین شیب و زمین‌های غیرزراعی در بالای شیب قرار دارند، این موضوع موجب افزایش و انتقال رس از بالا به پایین می‌شود. علاوه بر این، به علت اقلیم مرطوب منطقه شهرکرد، میزان تکامل و هوازدیدگی در خاک‌های این منطقه بیشتر بوده، در نتیجه میزان رس در خاک‌های ذو ریف‌های اراضی (سَّمَّا و فرخشه) شهرکرد بیش از خاک‌های ذو ریف‌های اراضی (جهانی و زیر) اسفون های بیشتر (جدول ١) می‌باشد. این مقدار آلی در تمام ریف‌های اراضی به استثنای ریف‌های فرحنش به طرف پایین شیب افزایش نشان می‌دهد. مقدار بیشتر رس و کربن آلی در موقعیت‌های پایین شیب نسبت به موقعیت‌های بالایی شیب، نشان دهنده تأثیر پستی و بتنی بر ریف‌های خاک است. مقدار فسفر محول در مرطوب منطقه شهرکرد، در بالای شیب و به طرف پایین شیب افزایش یافته است. این نتایج که قسمت عمده‌ای از فسفر خاک با جزء رس همرسان است.
مطالعه تغییر میکند. کیمیاژه و جلابان پک رزیدف ارگی - آبی را در استان جهارم و پختنی مورد مطالعه قرار دادند. نتایج به‌دست آمده نشان داد کلرولیت و کلرایت از مواد مادی به ارث رسیده‌اند و هوازدگی موجب ایجاد کانی‌های مختلف‌نم‌سی‌ان‌دی‌کلرایت - ورودی‌کواریت و کلرایت - کلرایت (شکل 1)

3. رنفر و رژیم فسفر

در پی تنظیم از مطالعات مشاهده شده و افزایش فسفر از خاک‌ها معمولاً در دو سطح انرژی و پیاز به انتظار تأثیر اعمال آن در فشار عنوان می‌شود و این مسئله تاثیر از زمان برای موجب‌سی‌های مختلف شیب در شکل‌های 3 نشان داده می‌شود. در نوع‌ماندی‌های و افزایش فسفر در مراحل اولیه سریع و سپس به کاهش‌زمان به تدریج کاهش می‌یابد. نا این‌که تعدد حاصل شود و واجد‌زمان این تصویر با سرعت نشان ادامه می‌یابد. این‌ها نشان‌های تشدید و تبدیل به هیدروکسی آپاتیت، واجدی دولف‌فر از کانی‌های رسی و کریستال‌ها و نهایتاً تبدیل هیدروکسی آپاتیت نسبت می‌دهد (1) افزایش دیورده و همکاران پیشنهاد کردن در خاک‌های آمیک در شکل‌فرزند و وجود دارد که یک شکل آن سریع و دیگر آهسته و به تدریج راه‌ها می‌شود. در 2 شرایط واجدی، این شکل به پیروی در طول 6 ساعت اولیه رها می‌شود. خود از آن سریع‌تر و شکل‌فرزند دوم 77 ساعت ادامه دارد. تا این‌که تعداد حاصل شود (10). کاهش تدریجی سرعت واجدی فسفر با زمان، ممکن است بر اثر کاهش پویش سطحی و بار سطحی و در نتیجه کاهش اثری برهمکنش (Interaction) از اکثر پدیده‌های فسفری گذشته شده باشد (17، 28). سرعت و مقدار واجدی فسفر در ریزفشارهای ارگی اختلافات (هشک نمکی، شیب و زمان) است. است (شکل 4 از در 4 ریزفشارهای پیشین، سرعت و مقدار واجدی از می‌شود (شکل 4) در این مطالعه وجود کلرایت به میزان

رسیده است. وجود کلرایت در خاک‌ها گاهی به عنوان امکان است که تأثیر مطالعه بتا p< 0.01 داشته باشد. وجود کلرایت نشان از مواد مادی باشد. وجود کلرایت نشان می‌دهد که خاک‌های روغن هوازدگی در این خاک‌های دیگر فردی‌های ارگی وجود حالت به و نیاز و تبدیل آن به اسکلت‌زمان می‌باشد. افزایش کلرایت و اسکلت‌زمان با طرف‌پای بیشتر به دلیل عنکبوت شدن مواد مادی از آن سریع‌تر همچنین در توضیح افزایش اسکلت‌زمان به طرف پایین بیشتر می‌توان تشکیل آن را به رسوخ از محلول‌زمان (دهی‌ریزی (Autoigenic) هم ارتباط داد. نتایج اولیه تعداد در این حالت با دی‌فی‌ام‌اف‌اس غلظت عناصر و اصلاح مناسب و همچنین نشان و نر شدنت می‌تواند خاک یک تر اثراتی زیم‌های زراعی اسکلت‌زمان کارمندی. در موضع‌بندی بالای شیب، هر چند که کانی‌های حساس‌ساز و اسکلت‌زمان دیده می‌شود، اما به دلیل هوازدگی و فراوانی کمتر. شیب بی‌پیگاه مربوط به بین کانی‌ها در موقعیت بالای شیب کمتر است. کلیه‌ای در مطالعه تکامل شکل‌های در یک ریزفصار ارگی در دیدن می‌کنند استان جهارم و پختنی مورد تأثیر تبدیل آبی در دست و اصلی‌ترین شیب به خاک‌های ارگی می‌تواند (2) از آنتی‌کیه که را هوازدگی در محلول اصفهان کمتر از شکست ارگی است. کانی‌های 21 می‌توانند توده‌سازی کمتری یافته‌اند و عمداً کانی‌های کانی‌وترابیتی و ایالات مشابه است. به‌طور کلی مناسبی‌های ارگی مورد مطالعه به این صورت بود: در موقعیت بالای شیب کانی‌وترابیتی و ایالات گالب بودند و به طرف موقعیت پایین شیب کانی‌های چندحت. کلرایت و اسکلت‌زمان یافته‌اند که توسعه آنها به دلیل هوازدگی در ریزفشارهای ارگی مورد

158
نمونه اشباع با پاتاسیم K: نمونه اشباع با پاتاسیم و حرارت ۵۵۰ درجه به مدت ۲ ساعت K-550

نمونه اشباع با مسیم Mg: نمونه اشباع با مسیم Mg-ET

شکل ۱. پراش نگار پرتو ایکس ذرات رس موقعیت بالا (الو)، وسط (ب) و پایین (ج) شیب، رددف ارضی فرخشهر
نمودن اشاع با پاتامیم

نمودن اشاع با پتامیم و جزیره ۵۵ درجه به مدت ۲ ساعت

نمودن اشاع با نتیجه

نمودن اشاع با نتیجه

نمودن اشاع با پتامیم و پتامیم گلیکول

نمودن اشاع با پتامیم و پتامیم گلیکول

شکل ۲. پروپان‌نگار پرتو ایکس ذرات رس موشک با (الف). وسط (ب) و پایین (ج) شیب، رده ی ارضی جی
شکل 3. واژنجی فسفر با زمان در موقعیت‌های مختلف رنگ‌ارضی شهرک صنعتی (J1، J2 و J3: به ترتیب موقعیت بالا، وسط و پایین).

شکل 4. واژنجی فسفر با گذشت زمان در رنگ‌ارضی چی (J)، زیار (Z)، سامان (S) و فرخشره (F).

نمودار بازه شیب بین تهیه‌کننده، سوخته و مصرف کننده است. در نتیجه جذب سطحی فسفر افزایش می‌یابد. بنا براین در مدت زمان کمتری، مقدار فسفر بیشتری از مکان‌هایی که به‌طور روزانه مصرف می‌شود از طرفی هم‌بسته می‌شود. از طرفی هم‌بسته می‌شود، باعث افزایش می‌شود.
4 مقایسه معادلات سیستمی و اجاقی فسفر

تغییر بهترین معادله سیستمی معمولاً براساس ضرایب تنش خصیص (χ) و خطای استاندارد براورد (SE) می‌گیرد. به عبارتی، دیگر معادلاتی که ضرایب تنش خصیص بالا و خطای استاندارد براورد کم داشته باشند به عنوان معادلاتی که سرعت آزاد شدن فسفر را بهتر توصیف می‌کنند، انتخاب می‌شوند. در مطالعه حاضر معادله سیستمی درجه اول (First order) و معادله سیستمی درجه دوم (Second order) پارابولیک (Parabolich) و دیافران الیوتیک (Diffusion parabolic) با داده‌های اولیه پراکنده شده شدند. ضرایب تنش خصیص (χ) و خطای استاندارد براورد (SE) معادله سیستمی در توصیف سرعت آزاد شدن فسفر در جدول 3 نشان داده شد. است. مطالعه الیوتیک به‌دلیل بودن ضرایب تنش خصیص و پایین بودن خطای استاندارد براورد، به عنوان بهترین معادله در تشخیص ردیابی بین آزاد شدن فسفر و زمان در خاک‌های مورد تحقیق انتخاب شد. معادله الیوتیک در تشخیص سرعت آزاد شدن و جذب فسفر توسط پیوستگی از محققین با موقعیت استفاده شده است (11) و (37). مطالعه الیوتیک داده‌های واججی فسفر را بر اساس تعدادی از مکانیسم‌های جدید از جمله پخشیگری تشریح می‌کند. به عبارت دیگر یکی از نتایج وارد در مدل الیوتیک مکانیسم پخشیگری است (34 و 35).
جدول 3. ضرایب تنشخیصی (SE) و خطای استاندارد برآورد (SE) معادلات سیستمیک در برایدش داده‌های واجدی فسفر

<table>
<thead>
<tr>
<th>خاک</th>
<th>درجه اول</th>
<th>ابزاری</th>
<th>اصلی</th>
<th>پارابولیک</th>
<th>SE</th>
<th>SE</th>
<th>SE</th>
<th>SE</th>
<th>SE</th>
<th>SE</th>
<th>SE</th>
<th>SE</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>1/2</td>
<td>0.94</td>
<td>0.95</td>
<td>0.98</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>J2</td>
<td>1/4</td>
<td>0.94</td>
<td>0.95</td>
<td>0.98</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>J3</td>
<td>1/6</td>
<td>0.94</td>
<td>0.95</td>
<td>0.98</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Z1</td>
<td>1/8</td>
<td>0.94</td>
<td>0.95</td>
<td>0.98</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Z2</td>
<td>1/10</td>
<td>0.94</td>
<td>0.95</td>
<td>0.98</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Z3</td>
<td>1/12</td>
<td>0.94</td>
<td>0.95</td>
<td>0.98</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S1</td>
<td>1/14</td>
<td>0.94</td>
<td>0.95</td>
<td>0.98</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S2</td>
<td>1/16</td>
<td>0.94</td>
<td>0.95</td>
<td>0.98</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S3</td>
<td>1/18</td>
<td>0.94</td>
<td>0.95</td>
<td>0.98</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F1</td>
<td>1/20</td>
<td>0.94</td>
<td>0.95</td>
<td>0.98</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F2</td>
<td>1/22</td>
<td>0.94</td>
<td>0.95</td>
<td>0.98</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F3</td>
<td>1/24</td>
<td>0.94</td>
<td>0.95</td>
<td>0.98</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*SE: ضرایب تنشخیصی

برای مشاهده قلم‌های مشابه، به ترتیب منحنی در سطح 10% و 5% پیش‌بینی می‌شود. بلافاصله، می‌توانید می‌گویید معادله پارابولیک این نکته را تایید می‌کند (جدول 3).

5. هیستوگرام پارامترهای واجدی فسفر با وزن‌های خاک

ضرایب هیستوگرام بین پارامترهای سرعت واجدی فسفر و وزن‌های خاک داده مطالعه در جدول 6 ارائه شده است.

مقدار رسانده شده بر سرعت در شرایط داده شدن فسفر در سطح R و به هیستوگرام مناسب دانسته شده است.

مقدار داده شده نشان می‌دهد که سطح ذرات خاک با مواد آن (spectroscopy) رفتار کلی مواد آن جذب نمی‌کند. نشان می‌دهد که ضریب پیش‌بینی فسفر با افزایش مقدار رس خاکهای اهرکی آماده شد. با افزایش ضریب پیش‌بینی فسفر می‌توان یکی از علل مقدار بالای سرعت واجدی فسفر در خاک‌های حاری مقدار رس زیاد باشد.

سرعت واجدی که از معادلات سیستمیک مشتق می‌شود به طرف پایین شربون افزایشی پایه است (جدول 3). این موضوع می‌تواند نتایج را منجر به قرار نگرفته در ساتر و پارامترهای واجدی می‌باشد. چراکه مقدار رس نمی‌تواند به طرف پایین شربون افزایشی پایه نشود. مطالعات X-Ray photoelectric و الکترونی پرنواباتکی خاک (X-Ray photoelectron spectroscopy) نشان می‌دهد که سطح ذرات خاک با مواد آن (spectroscopy) رفتار کلی مواد آن جذب نمی‌کند. نشان می‌دهد که ضریب پیش‌بینی فسفر با افزایش مقدار رس خاکهای اهرکی آماده شد. با افزایش ضریب پیش‌بینی فسفر می‌توان یکی از علل مقدار بالای سرعت واجدی فسفر در خاک‌های حاری مقدار رس زیاد باشد. از طرفی مقدار پارامترهای...
جدول 4 پارامترهای معادلات سیبکی و انجیلی فسفر و مقدار فسفر آزاد شده (Qf)

<table>
<thead>
<tr>
<th>پارامترهای کش</th>
<th>تابع نمایی</th>
<th>پارامترهای انجیلی</th>
<th>درجه اول</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qf</td>
<td>Qm</td>
<td>R</td>
<td>a</td>
</tr>
<tr>
<td>0.25</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

سرعت آزادسازی فسفر در زمان اولیه (Qf) سرعت آزادسازی فسفر در زمان نهایی (Qm)

مقدار فسفر آزاد شده در زمان اولیه (DRf)

مقدار فسفر آزاد شده در زمان نهایی (DRm)

کاهش جذب فسفر مؤثر باشد.

برعکس در خاک‌های با کربنات کلسیم کمتر و اکسیدهای آهی و آلومینیوم بیشتر، سرعت و انجیلی فسفر نسبتاً کم است. مقدار

A_{f} با پارامترهای سرعت و انجیلی فسفر رابطه به پیام نمودیکی نشان داد (جدول 4). از انتجایی که و اخیت یا جذب و انجیلی

فسفر غاسب روی سروبی کپسیده، کربنات‌ها و کانی های رش صورت می‌گیرد. خاک‌های دارای رس، کربنات کلسیم معادل

فعال، کربنات کلسیم معادل و A_{f} بیشتر، مقدار فسفر بیشتری را

در فاز جامد نمی‌داشته و در یک دوره زمانی معین مقدار فسفر

بیشتری را آزاد می‌کند. لذا سرعت و انجیلی فسفر در مقایسه

164
جدول ۵: همبستگی پارامترهای سرعت معادلات سیستمی و ادغامی فسفر با یکدیگر

<table>
<thead>
<tr>
<th>Q<sub>r</sub></th>
<th>Q<sub>m</sub></th>
<th>ab</th>
<th>R</th>
<th>1/β</th>
<th>DR<sub>f</sub></th>
<th>DR<sub>n</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>* ۵*</td>
</tr>
<tr>
<td>* ۵*</td>
</tr>
<tr>
<td>* ۵*</td>
</tr>
<tr>
<td>* ۵*</td>
</tr>
<tr>
<td>* ۵*</td>
</tr>
<tr>
<td>* ۵*</td>
</tr>
</tbody>
</table>

P< ۰/۰۵

جدول ۶: ضرایب همبستگی بین پارامترهای سرعت معادلات سیستمی و ادغامی فسفر و برخی ویژگی‌های خاک‌های مورد مطالعه

<table>
<thead>
<tr>
<th>Fe-CBD</th>
<th>Al-CBD</th>
<th>ACCE</th>
<th>CCE</th>
<th>Clay</th>
<th>OC</th>
</tr>
</thead>
<tbody>
<tr>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
</tr>
<tr>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
</tr>
<tr>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
</tr>
<tr>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
</tr>
<tr>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
</tr>
<tr>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
<td>* ۵*</td>
</tr>
</tbody>
</table>

P< ۰/۰۵

مرطوب شدن خاک و از طرفی گروه‌های عاملی سطحی کمتر، اگر و ادغامی فسفر با یکدیگر را تحت تأثیر قرار داده و سرعت آزاد شدن فسفر را افزایش می‌دهد (۴۴ و ۳۵). کانی‌های رسی غیرانتی‌سپت‌پذیر مثل کانولین‌های بدلیل داشتن گروه‌های عاملی سطحی در جذب فسفر مقررتند و آزاد شدن فسفر با تأخیر صورت می‌گیرد. از طرفی در این‌ها جذب توسط کانی‌های مثل کانولین‌های اسب‌ستا نسبت به ورمس‌کولاپت و میکا سریعتر صورت گرفته زیرا در کانولین‌ها و اسب‌ستا، مکانی‌های جذبی بیشتری وجود دارد و ورمس‌کولاپت و میکا دارای مکان‌های چندگانه شامل مکان‌های بین لایه‌های لبه‌ای و

با خاک‌های دارای مقدار کمتر این اجزاء بیشتر می‌باشد. روابط بین مقدار فسفر قابل و ادغامی در خاک بعد از ۵/۰۵ ساعت آزاد شدن فسفر را افزایش می‌دهد (۴۴ و ۳۵). کانی‌های رسی غیرانتی‌سپت‌پذیر مثل کانولین‌های بدلیل داشتن گروه‌های عاملی سطحی در جذب فسفر مقررتند و آزاد شدن فسفر با تأخیر صورت می‌گیرد. از طرفی در این‌ها جذب توسط کانی‌های مثل کانولین‌های اسب‌ستا نسبت به ورمس‌کولاپت و میکا سریعتر صورت گرفته زیرا در کانولین‌ها و اسب‌ستا، مکانی‌های جذبی بیشتری وجود دارد و ورمس‌کولاپت و میکا دارای مکان‌های چندگانه شامل مکان‌های بین لایه‌های لبه‌ای و

۶. تفاوت‌های کانی‌های رسی در و ادغامی فسفر خاک علاوه بر مقدار رس، تأثیر نژاد را هم باید در و ادغامی فسفر در نظر گرفت. کانی‌های رسی غیرانتی‌سپت‌پذیر و غیرانتی‌سپت‌پذیر تأثیر متفاوتی بر سرعت و ادغامی فسفر دارند. وجود کانی‌های غیرانتی‌سپت‌پذیر بدلیل تغییر در اندامه حاکمان و شکستن آن‌ها بر اثر

۶۰
نتیجه‌گیری

به‌طور کلی اجرای مختلف خاک در واقع‌های فسفر در خاک
نحوه مهم قرار دارد که از مسئولیت‌های این اجزای می‌تواند به
کلاهی رسمی ایجاد کرد و در ریزه‌های ارضی مورد مطالعه،
کلاهی رسمی از بالای شیب به سمت پایین شیب از نوع
انساب‌ناپایداری در انسباژی تغییر کرده که تأثیر به‌کلمه در
واژه‌ای فسفر مطالعه است. در این مطالعه وجوه کلاهیت به
اپایه رشد است. در شرایط خاک‌های مورد مطالعه با
می‌توان و این کلاهی به مواد مادی نسبت داده می‌شود.
افراشی کلاهی و اسکاتیکی به طرف پایین شیب بهدیل به
ارنگ رسمی از مواد مادی می‌باشد. البته در رابطه با اسکاتیک
اسکاتیکی به طرف پایین شیب، شکلی از محلول خاک هم
پیشنهاد می‌شود. در این حالت به‌دلیل افزایش خلقتعم و
مالی و به‌دلیل افزایش خشک و مروطب شدن
به‌طوری‌که کلاه‌هایی در ارضی مشخص تشکل از گروه خاک
رفتاری مشخص بوده که فعالیت‌های رسمی از
می‌تواند به‌طور موفقیت‌پایی شیب در ریز
ارضی از نوع انسباژی تغییر کرده، از
طرف مقدار مواد آلی به طرف کلاه‌های شیب افزایش
یافته. پارامتر سرعت R، میزان این روش مغذی
نام‌یابی می‌شود. این در کلاهی در گرفتاری
ارضی از مواد مادی و سرعت افزایش
ساخته‌ای نشان می‌دهد. همچنین در فرآیند کلاهی ارضی،
مقدار سر رأس خاک به طرف سطح
افراشی نشان می‌دهد. این در کلاهی در جزیات
در نظر گرفتن روند تغییرات به تأثیر مواد آلی و رس بی‌ردی و روند تغییرات پارامترهای سرعت در دید
ارضی و همچنین تأثیر کلاه‌های رسی می‌توان توجهی در
گرفتاری افزایشی در تأثیر پایین شیب افزایش
ساخته‌ای نشان می‌دهد. البته در این مطالعه تأثیر کلاه‌های رسی بر آزاد شدن فسفر
به‌صورت کیفی و در حضور سایر اجزای خاک صورت گرفته
است، در حالی که در روند واجدی فسفر ناپایی تأثیر سایر
اجزای را ناپدید می‌گردد. لذا برای تأثیر مستقیم میزان‌الزی در هر
فاصله در خاک و حذف تأثیر سایر اجزای باید مطالعه‌ی نهایی

صفحه‌ای می‌باشد. بنابراین نه تفاوتی تأثیری در
مکان‌های گذرانده در آزاد شدن فسفر تأثیر می‌گردد.
همچنین مکان‌های بیشتر وجود داشته باشد، فسفر بیشتر
یک تابع جذب شده و در تأثیر ذخیره خاک صورت گرفته
می‌باشد. یک همکاران در رابطه با تأثیر همکاری رسمی بر
سیاست‌های فسفر در منطقه قاهره مصر مطالعه‌ای انجام دادند.
نتایج مطالعه‌های نشان داد پارامترهای مساحت سرعت برای
کلاهی مورد بررسی بیشتر از کلاهیت رود و آزاد شدن
فسفر هم پیشتر بود (37). مطالعه‌های توزیع بین و همکاران در
راستی از دری کلاهی تغییر کرده، از
ارضی از نوع انسباژی تغییر کرده، از
طرف مقدار مواد آلی به طرف پایین شیب افزایش
یافته. پارامتر سرعت R، میزان این روش مغذی
نام‌یابی می‌شود. این در کلاهی در جزیات
در نظر گرفتن روند تغییرات به تأثیر مواد آلی و رس بی‌ردی و روند تغییرات پارامترهای سرعت در دید
ارضی و همچنین تأثیر کلاه‌های رسی می‌توان توجهی در
گرفتاری افزایشی در تأثیر پایین شیب افزایش
ساخته‌ای نشان می‌دهد. البته در این مطالعه تأثیر کلاه‌های رسی بر آزاد شدن فسفر
به‌صورت کیفی و در حضور سایر اجزای خاک صورت گرفته
است، در حالی که در روند واجدی فسفر ناپایی تأثیر سایر
اجزای را ناپدید می‌گردد. لذا برای تأثیر مستقیم میزان‌الزی در هر
فاصله در خاک و حذف تأثیر سایر اجزای باید مطالعه‌ی نهایی

1387 ناشر: انتشارات دانشگاه تهران

165
23. Murphy, J. and J. P. Riley. 1962. A modified single solution method for determination of phosphate in natural

