تأثیر شرایط آزمایشی، مقدار ماده آلی، رس و کربنات کلسیم خاک بر میانگین وزنی قطر و مقاومت کششی خاک‌های در برخی از خاک‌های استان همدان

علي خزایی, محمد رضا مصدفي و علي اکبر محبوبی

(تاریخ دریافت: 17/7/85; تاریخ پذیرش: 86/12/7)

چکیده

ویژگی‌های فیزیکی و شیمیایی خاک و شرایط آزمایشی بر پایداری ساختمان خاک مؤثرند. در این پژوهش اثر شرایط آزمایشی در کنار ویژگی‌های ذاتی بر پایداری خاک‌های شماری از خاک‌های استان همدان به‌عنوان مدل‌بردار و اندازه‌گیری مقدار کششی خاک‌های بررسی شده‌اند. از دو شاخص میانگین وزنی قطر (MWD) و مقدار کششی (Ks) خاک‌های برای پایداری ساختمان خاک استفاده شد. در روشن کردن با استفاده از پیش‌مرطوب کردن، سه مقدار متفاوت (Ks) و (MWD) ثابت کردن خاک‌های در آب به نظر رفته‌اند. مقدار کششی خاک‌های یی در نتیجه شرایط فیزیکی و مکش متریک (500 kPa) به روش خریدن برزیلی اندازه‌گیری شد. البته توجه به پایداری ساختمان نسبی ضعیف خاک‌های کامه که از ویژگی‌های مناسب شکل و نیمه‌شکل است، زمان‌های کوتاه کردن خاک‌های هر نوع تشخیص نتایج پایداری ساختمان ناشی از ویژگی‌های ذاتی متوسط بود. در این ویژگی‌های مؤثر بر MWD و کسبات کلسیم که اثر آن بر 7 خاک‌های بررسی شد. تأثیر ماده آلی بر محاسبه نشان از ویژگی‌های تحت تاثیر شرایط تربیتی (R²)، برای رابطه خاک‌های متریک (500 kPa) خاک‌های مرزی بررسی در مکش متریک 500 kPa مکش یا مکش متریک 500 kPa

واژه‌های کلیدی: پایداری ساختمان خاک، آلی، رس، برزیلی، مکش متریک، بافت خاک، ماده آلی، کربنات کلسیم

مقدمه

در این پژوهش به نحوی پژوهشی، حاکمیت و جدایی از هم پایه شده می‌شود. عوامل زیادی در این مدل‌بردار با هم پرونده و طی فرآیند پیچیده و تحت تأثیر عوامل فیزیکی، شیمیایی و بیولوژیکی هم‌آبی از درشت متغیر که ساختمان خاک نامیده می‌شود. ساختمان خاک به ترتیب فنری کهشناسی خاک‌های کامه، استادیار و دانشیار خاک‌شناسی، دانشکده کشاورزی، دانشگاه بومی سیستان، همدان mosaddeghi@Basu.ac.ir

1) به ترتیب دانشجوی سابق کارشناسی ارشد، استادیار و دانشیار خاک‌شناسی، دانشکده کشاورزی، دانشگاه بومی سیستان، همدان

mosaddeghi@Basu.ac.ir

123
برای نشان دادن از خس اش باید بسیار سریع می‌شود.

تنها و همکاران (32) از رسم جهانی یک ملات بین ذرات خاک، آب و درایفیده کردن که با افزایش مقادیر رس پایداری ساخته گردند خاک‌افزایی می‌باید. رازی و کمی (29) دریافتند که پایداری خاک‌افزایی‌ها به روش الکتریکی با افزایش مقادیر رس خاک‌افزایی می‌باشد. این گزارش گردند که رس به عنوان عامل مهمی در یوندان دادن ذرات اولیه خاک به هم‌دستی و تشکیل خاک‌افزایی‌ها عمل می‌کند.

باید و پاره‌ی (35) به نفس مثبت کردن کلیسم در پایدار ساخته‌گر خاک‌هایی اهمیت پی برند. شایستگی و همکاران (31) مقداری مثبت کردن کلیسم به خاک اضافه کرده و به این ترتیب روند کاهش در مقدار فرآیند می‌باشد. کلیسم کنترل خاک‌افزایی می‌باشد. کردنی کلیسم مانند ملات بین ذرات خاک می‌تواند روتور را در بر بیش از ذرات خاک شود. همچنین یک کلیسم ناشی از انحیال آن با هم‌آوری ذرات و طور غیر مستقیم که تأثیر بر فعالیت رژیم‌های خاک ساخته‌گری را قوی‌تر می‌کند. هیل و اسپیزوتو (16) و کردنی و همکاران (7) مشاهده کرده‌اند که افزایش غلظت بیون کلیسم در محلول خاک باعث کاهش پراکنش ذرات رس خاک می‌شود. نادر و همکاران (24) نتیجه گرفته‌اند که افزودن کلیسم به خاک‌های سردیمی از راه آب ایزایی، منجر به اصلاح و خاک‌افزایی پایداری ساخته‌گر آنها می‌شود.

روش‌ها و شاخص‌های متعددی برای ارزیابی پایداری ساخته‌گر خاک پیشنهاد شده است. این روشهای به‌اساس شرایط مختلف خاک‌ها و بر حسب اهداف متفاوت ارائه شده‌اند. یکی از روشهای رایج برای ارزیابی پایداری ساخته‌گر خاک برسی توزیع اندازه خاک‌افزایی‌ها است. توزیع اندازه خاک‌افزایی‌ها معمولاً به‌کمک روش الکتریکی (Dry sieving) و المال خشک (Wet sieving) می‌شود. روش الکتریکی بشری باید بررسی تأثیر (Soil crumling) خاک‌ورزی بر خرد و نرم‌دانی خاک (Ghel).
تأثیر شرایط آزمایش، مقادیر ماده آلی، رس و کربنات کلسیم خاک بر میانگین وزنی قطر…

روش با روش‌های مناسب برای ارزیابی پایداری ساختگی و رابطه آن با ویژگی‌های ذاتی در برخی از حاکم‌های استان همدان (با اقتیاد نیمه خشک) می‌باشد.

مواد و روش‌ها

پس از بررسی نشان‌هایی در نیم‌خاک ۲۱ حاکم از سری‌های مهم حاکم‌های زراعی استان همدان گزینش شد. حاکم‌هایی که گونه‌ای انتخاب شدند که به عنوان یکی از ابست فیزیولوژی‌های آنی و مقادیری کلسیم بیده و غیرسیاسی باشد (جدول ۱). در پاییز ۱۳۸۳ نمونه‌های خاک از لزه ۰–۳۰ سانتی‌متر برداشت شدند، به آزمایشگاه متقابل کرده و هوا-خشک شدند.

نمونه‌برداری از گونه‌ای انجام شد که کم‌تغییری و تغییر در خاک‌های با رنگ دهد. یگرگاهی خاک شامل توزیع انتزاع دراث اولیه و بافت به روش بیست (۱۳) مقادیرماده آلی به روش اکسیداسیون تر، مقادیر کربنات کلسیم معادل به روش تیتراسیون برگشته و رسالنی بکریکی و واکنش کل اثبات خاک‌ها به ترتیب pH متر اندازه‌گیری شدند (۲۶).

اضافه‌گری مقاومت کششی خاک‌های‌ها (9) در رطوبت هوا-خشک و مکس‌متریک ۵۰۰ kPa استفاده شد. آزمایش‌های اولیه نشان داد که به لیبل پایداری اندازه‌گیری مورد بررسی، مقاومت کششی خاک‌های‌ها در مکس‌متریک کمتر از ۵۰۰ ناچیز بودن و تغییر شکل آنها عدم‌دعا خمیدن و مانندگار می‌باشد که با اصول روش غیرمستقیم برزیلی مگاپرت دار. می‌باشد که از این نظر می‌تواند محدود باشد و زن و ۳۰ عدد از آنها به‌طور تصادفی برای هر آزمایش انتخاب و وزن شوند. برای تیمار مکس‌متریک ۵۰۰ kPa عدد از مقاومت کششی خاک‌های مذکور انتخاب شده و مکس‌متریک آنها با استفاده از قطع کشش‌های بین و دو صفحه بارگذاری (با استفاده از دستگاه تک‌محوری (Uniaxial compression test) شکسته شده و مقاومت کششی آنها به کمک رابطه زیر محاسبه شد:

\[
Y = \frac{e}{576F}
\]

که در این رابطه \(Y \) نیروی نیاز مورد نیاز برای کشش‌های خاک‌های‌ها با قطر مؤثر (Effective diameter) \(d_{eff} \) ()*دقت محلولی \(d_{eff} \) (یا حضور با قطر مؤثر \(d_{eff} \) (یا حضور با قطر مؤث
تأثیر شرایط آزمایش، مقدار افزایش کلسیم، مقدار ماده آلی، رس و کربنات کلسیم خاک بر میانگین وقیت...

3.0 عدد خاک‌ها و M_0 جرم خاک‌های آزمایشی به مقدار M_0 در شرایط رطوبتی آزمایشی شد. جمعاً تعداد 180 آزمایش مقاومت کششی خاک‌های انجام شد (11 خاک × 2 رطوبت × 30 خاک‌ها).

برای شناخت و بررسی عوامل مهم مؤثر بر پایداری ساختمان خاک‌های مورد بررسی، روابط رگرسیونی خصی و جداسازی بین MWD به‌کمک نرم‌افزار Minitab بررسی گردید. نرم‌افزار Excel برای ایجاد نمودارهای داده استفاده شد.

نتایج و بحث

در جدول 1 مکان نمونه‌های مورد بررسی، طول و عرض، جغرافیایی، مقدار ماده آلی، رس و کربنات کلسیم در خاک‌های MWD مورد بررسی و مقدار شاخص‌های پایداری ساختمان (آ) و (Y) و اثرات میزان فرسایش قطعی و ضریب تغییرات هر کدام آورده شده است. خاک‌های مورد بررسی دامنه نسبتاً وسیعی از پایداری ساختمان (Y و MWD) دارند.

ارتباط بین پایداری خاک‌ها و ویژگی‌های ذاتی خاک

ارتباط بین پایداری خاک‌ها (MWD) و ویژگی‌های ذاتی خاک‌های مورد بررسی برای خاک‌های کربنات در آب در مقدارهای 10 و 15 نشان داده که تمام آنها در سطح آماری 1 درصد معنی‌دار می‌باشند:

MWD (mm)	R^2	مقدارهای R^2	آماری-
MWD$_{10}$ (mm)	0.99	0.82	آبیاری
MWD$_{15}$ (mm)	0.99	0.82	آبیاری
MWD$_{0}$ (mm)	0.99	0.82	آبیاری

در این روابط با MWD$_{0}$، MWD$_{10}$ و MWD$_{15}$ به ترتیب

با افزایش زمان نکان دان دانگ کننده کربنات کلسیم در آب (افرازش نشانه‌های Mکاسیکی-آبی)، MWD به ترتیب به ترتیب گزارش مقدار MWD به ترتیب به ترتیب گزارش مقدار MWD به ترتیب به ترتیب گزارش مقدار MWD به ترتیب به ترتیب گزارش مقدار

انحراف معیار به مقدار Y در مراحل 10 و 15 دقیقه

Y (mm)	R^2	آماری-
25 30 35	0.82	آبیاری
30 35 40	0.82	آبیاری
35 40 45	0.82	آبیاری

(نتایج آزمایش‌ها) بهبود می‌یابد.
جدول ۱. برخی از ویژگی‌ها و پایداری خاک‌های مورد بررسی

<table>
<thead>
<tr>
<th>شماره خاک محل نمونه‌برداری</th>
<th>رده‌بندی</th>
<th>میزان رس</th>
<th>جغافایی</th>
<th>فاصله‌ای</th>
<th>کربن</th>
<th>ماده آهی</th>
<th>pH</th>
<th>طول و عرض</th>
<th>میزان %w/w</th>
<th>میزان dS m⁻¹</th>
<th>میزان MWD 0</th>
<th>MWD 15</th>
<th>MWD 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>Typic Halaquepts</td>
<td>۴۶/۵۱</td>
<td>۵/۱۸</td>
<td>۵/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۳/۱۸</td>
<td>۲/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۲</td>
<td>Veric Xerochrepts</td>
<td>۴۶/۵۱</td>
<td>۵/۱۸</td>
<td>۵/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۳/۱۸</td>
<td>۲/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۳</td>
<td>Typic Endoaquepts</td>
<td>۴۶/۵۱</td>
<td>۵/۱۸</td>
<td>۵/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۳/۱۸</td>
<td>۲/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۴</td>
<td>Typic Haploxeralfs</td>
<td>۴۶/۵۱</td>
<td>۵/۱۸</td>
<td>۵/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۳/۱۸</td>
<td>۲/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۵</td>
<td>Typic Calcixerepts</td>
<td>۴۶/۵۱</td>
<td>۵/۱۸</td>
<td>۵/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۳/۱۸</td>
<td>۲/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۶</td>
<td>Typic Haploxeralfs</td>
<td>۴۶/۵۱</td>
<td>۵/۱۸</td>
<td>۵/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۳/۱۸</td>
<td>۲/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۷</td>
<td>Aeric Haplaquepts</td>
<td>۴۶/۵۱</td>
<td>۵/۱۸</td>
<td>۵/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۳/۱۸</td>
<td>۲/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۸</td>
<td>Aeric Haplaquepts</td>
<td>۴۶/۵۱</td>
<td>۵/۱۸</td>
<td>۵/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۳/۱۸</td>
<td>۲/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۹</td>
<td>Typic Calcixerepts</td>
<td>۴۶/۵۱</td>
<td>۵/۱۸</td>
<td>۵/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۳/۱۸</td>
<td>۲/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۱۰</td>
<td>Aeric Haplaquepts</td>
<td>۴۶/۵۱</td>
<td>۵/۱۸</td>
<td>۵/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۳/۱۸</td>
<td>۲/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۱۱</td>
<td>Aeric Haplaquepts</td>
<td>۴۶/۵۱</td>
<td>۵/۱۸</td>
<td>۵/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۳/۱۸</td>
<td>۲/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>۱۲</td>
<td>Typic Calcixerepts</td>
<td>۴۶/۵۱</td>
<td>۵/۱۸</td>
<td>۵/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۱/۱۸</td>
<td>۴/۱۸</td>
<td>۳/۱۸</td>
<td>۲/۱۸</td>
<td>۱/۱۸</td>
<td>۱/۱۸</td>
</tr>
<tr>
<td>میانگین</td>
<td>انحراف معیار</td>
<td>% CV</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1. به ترتیب نشان دهنده میانگین و انحراف میانگین (متوسط سه تکرار) در زمان‌های 10 و 15 دقیقه نکات دادن الکها در روش الک تر می‌باشد.

MWD = M. W. D. MWD، و MWD، به Y_{50}Le، و Y_{100}Le می‌پردازد.

تری‌تیپ بیانگر مقاومت کششی خاک‌های خاک ناشر در شرایط رطوبت و با توجه به مکان ماتریک 500 kPa است.

% CV بیانگر درصد تغییرات می‌باشد.
در جدول ۱ از آنکه شده است، دامنه تغییرات Y در خاک‌های مورد بررسی برای شرایط رطوبت‌های و خاک‌های ماتریک ۵۰۰ kPa به ترتیب ۱۳۵ و ۲۳۸ kPa و مقدار ۵۰۰ kPa در مکش‌های ماتریک پایین از خاک‌های مورد بررسی رفتار خاکی داشته و گسیختگی ترد در آنها رخ نداد، در حالی که خاک‌های مناطق مرطوب و نیمه مرطوب در پایین‌ترین سطح معمول خاک‌های مورد بررسی ۲۷۸ kPa، در واقع خاک‌های اسلتانی از مکش‌های ماتریک کمتر از ۱۰۰ kPa. مقاومت کششی خاک‌های ماتریک ۵۰ و ۱ اندازه‌گیری کردن.

با استفاده از کرده، مانکه‌های Y و مکش‌های خاک‌های ماتریک خاک‌هایی که به ترتیب از ۱ ۱ از افزایش رطوبت و خاک باعث ضعف شدن پوست وال پس از افزایش Y خاک‌های ماتریک در رطوبت‌های و خاک‌های ماتریک ۵۰۰ kPa به ترتیب ۱۳۵ و ۲۳۸ kPa و مقدار ۵۰۰ kPa در مکش‌های ماتریک ۵۰۰ kPa به ترتیب ۱۳۵ و ۲۳۸ kPa و مقدار ۵۰۰ kPa در مکش‌های ماتریک ۵۰۰ kPa به ترتیب ۱۳۵ و ۲۳۸ kPa، در واقع خاک‌های اسلتانی از مکش‌های ماتریک کمتر از ۱۰۰ kPa.

مقدار رطوبت خاک باعث ضعف شدن پوست وال پس از افزایش Y خاک‌های ماتریک در واقع خاک‌های اسلتانی از مکش‌های ماتریک کمتر از ۱۰۰ kPa.

مقدار رطوبت خاک باعث ضعف شدن پوست وال پس از افزایش Y خاک‌های ماتریک در واقع خاک‌های اسلتانی از مکش‌های ماتریک کمتر از ۱۰۰ kPa.

مقدار رطوبت خاک باعث ضعف شدن پوست وال پس از افزایش Y خاک‌های ماتریک در واقع خاک‌های اسلتانی از مکش‌های ماتریک کمتر از ۱۰۰ kPa.

مقدار رطوبت خاک باعث ضعف شدن پوست وال پس از افزایش Y خاک‌های ماتریک در واقع خاک‌های اسلتانی از مکش‌های ماتریک کمتر از ۱۰۰ kPa.
تاثیر رابطه آزمایش، مقدار ماده آلی، رس و کربنات کلسیم خاک بر میانگین وزنی قطر...

شکل ۲. رابطه بین پایداری خاک‌های (MWD) و درصد ماده آلی خاک (OM) برای زمان‌های کل کردن در آب:
الف) ۵ دقیقه، ب) ۱۰ دقیقه و ج) ۱۵ دقیقه.

کشی خاک‌های دارای حالت هوا-خشک و مکش ماتریکس ۵۰۰ kPa مکش ماتریکس در محدود کردن به ۱۰۰۰ ماکس مکش ماتریکس مربوط است. در واقع بهترین (قوی‌ترین) رابطه مقاومت کشی خاک‌های خاک‌های با ویژگی‌های ذاتی خاک‌های مورد بررسی برای مکش ماتریکس ۵۰۰ kPa به دست آمد. همچنین بیشترین نقص در Y خاک‌های خاک‌های خاک‌های ۶۰ اثرات شده که در سطح آماری ۱ درصد معنی‌دار می‌باشد:

\[Y_{air-dry} (kPa) = 38/2 + 33/2 \ OM\% + * / 8 + \]

\[Cl\% + * / 84 CaCO_3\% \ R^2 = 0.76 \] [V]

\[Y_{500 kPa} (kPa) = 2 * 1 + 1 / 3 \ OM\% + * / 13 \]

\[Cl\% + * / 84 CaCO_3\% \ R^2 = 0.76 \] [V]

در این روابط Y_{800 kPa} به ترتیب نشان دهنده مقاومت Y_{air-dry} در ۲۰۰ kPa و Y_{air-dry} که در محدود کردن
پایه. چون تمامی روابط به‌طور بکران بر اساس درصد‌های ماده آن، کربنات کلسیم و رس خاک ارورد شده‌اند، مقایسه اثر این ویژگی‌ها بر مقاومت کششی خاک‌های آسیا می‌تواند که تأثیر گذاری ماده آلی بر مقاومت کششی خاک‌های آسیا- خاک‌های حدود ۲۰ برابر رس و ۷۰ برابر کربنات کلسیم است. برای مکان‌های مریک رس کاهش یافته در مورد کربنات کلسیم، نسبت تأثیر گذاری ماده آلی به کربنات کلسیم بر خاک‌های آسیا بیش از ۲ برابر کاهش یافته. به نظر می‌رسد که با افزایش رطوبت خاک، کلسیم که در حال هوا- خاک نشان می‌دهد، حاصلانه این کانال و تولید یون هماوری به کلسیم، می‌تواند باعث افزایش بهره‌مندی آن با افزایش رطوبت خاک‌های آسیا شود.

این موضوع می‌تواند به‌صورت غیرفعل در خاک وجود دارد، فعالیت‌های سه و اثر حضور را به‌صورت جالب حاکی- خاک‌های نمایان می‌دهد. حال شدن این کانال و تولید یون هماوری به کلسیم، می‌تواند باعث افزایش بهره‌مندی آن با افزایش رطوبت خاک‌های آسیا شود.

نتیجه‌گیری
نتایج این پژوهش نشان داد که استفاده از پیش-تیمار مطلق کردن آمیاب در اندازه‌گیری پایداری ساختار خاک نسبت به پیش-تیمار مطلق کردن سریع باعث از هم گسترشی کنم خاک‌های آسیا در مدت آلی کردن می‌شود. هم‌چنین نتایج نشان داد

