آثار مقافر مختلف سولفات و کربنات کلسیم تحت جریان اشباع ماندگار بر گذب
و نگهداری باکتری سودوموناس فلوئرنس در ستونهای شن

کامیلو رستمی، محمد رضا مقدمی، على اکبر محیوی و علی اکبر صفری سنجانی

(تاریخ دریافت: 11/9/1387، پذیرش: 20/12/1387)

چکیده

انتشار پلاکی باکتری‌های بیماری‌زا در محیط‌های مخلوط و آب‌های زیرزمینی از مهم ویژه‌ای برخوردی است. در حال حاضر اثر مقافر مختلف سولفات و کربنات کلسیم بر گذب و نگهداری باکتری سودوموناس فلوئرنس در ستونهای شن تحت شرایط رطوبتی اشباع بررسی شده‌است. این پژوهش اثر مقافر سولفات کلسیم و کربنات کلسیم در سطح‌هایی که توسط کربنات کلسیم و سولفات کلسیم احیا می‌شود و در سطح‌هایی که توسط کربنات کلسیم و سولفات کلسیم تخمین‌گذاری می‌شود مورد بررسی قرار گرفته است. نتایج نشان داد که اثر مقافر کربنات کلسیم بر گذب و نگهداری باکتری سودوموناس فلوئرنس در سطح‌هایی که توسط کربنات کلسیم و سولفات کلسیم احیا می‌شود بیشتر از سطح‌هایی که توسط کربنات کلسیم و سولفات کلسیم تخمین‌گذاری می‌شود مورد بررسی قرار گرفته است.

واژه‌های کلیدی: سولفات کلسیم، کربنات کلسیم، سودوموناس فلوئرنس، گذب، نگهداری

مقصد:

از دیروژی جایی‌های نمک‌ها و عناصر مورد نیاز گیاهان در خاک به طور کلی‌رده‌ای مورد توجه بوده است. علل به حرکت

1. به ترتیب دانشجوی سابق کارشناسی ارشد، استادیار، استادیار، و استاد خاک‌شناسی، دانشکده کشاورزی، دانشگاه بومی سا، همدان
mosaddeghi@basu.ac.ir

مرجع: مسئول مکاتبات، پست الکترونیکی:
در پژوهش‌های انجام شده در مورد حرقه پاک‌دارها در خاک، به تأثیر ویژگی‌های از خاک مانند میزان رطوبت خاک توجه زیادی شده است. در مطالعه‌های که در دیپردوز و میلر (5) در مورد حرقه پاک‌دارها در سایه‌های سیخ (Escherichia coli) تحت شرایط رطوبت مختلف انجام داده شده بود، به این ترتیب رسیده شد که تحت شرایط رطوبت اشباع و نرخی به اشباع میزان پالایش تیمارها در طول سمت‌های خاک نسبت به شرایط رطوبت غیر اشباع کاهش می‌یابد. مقدار بیشتری اکسیراکسیژن در خاک در بخشی از سایه‌های خاکی در می‌آید. اندازه‌گیری فیزیکی و شیمیایی میزان سطح بردار و نیز رابطه برای جذب در مکانی‌های جذبی را تحت تأثیر قرار داده (15).

حرکت کلون‌های نشانی داد که در شرایطی که میزان رطوبت خاک کمتر از اشباع می‌باشد، انتقال پاک‌دار کمتری گزارش گردید. بیشتر و همکاران (16) (Q. Klebsiella aerogenes) میزان موثر بر حرقه پاک‌داری کلیسیلا آورزند در یک خاک شنی را میزان رطوبت مورد بررسی قرار دادند.

۱) نام‌نامتنده.

از حاکمیت انتقال نمونه‌ها و پاک‌داری خاک‌ها، با راه‌های مختلف عکس‌برداری شده‌اند، که اثر یک‌نواختی خاک‌ها شامل در و دارا، و اثر پس‌سنجی سطحی (4) بر انتقال ورزش و بیشتری به هیچ‌کدام است. تأثیر متنوع‌های مختلف بر حرقه پاک‌داری خاک در حال مورد بررسی قرار گرفته است.

حرکت پاک‌دارها مانند حرقه املاح تحت تأثیر ویژگی‌های یکسانی که در شرایط رطوبت خاک، و چگالی و روابط انتقال بیشتری در سایر اشکال کرد. خاکی می‌تواند به عوامل یک بالا‌نده عمل نموده و بر انتقال بیشتری تأثیر بگذارد (8 و 11).
مواد و روش‌ها
مواد مورد استفاده

(کیفیت) (مصرفی) (سولفات کلسیم)
مواد مورد استفاده
انی‌پویش در شرایط آزمایشگاهی روی ستون‌های شن شسته
شد (با آب آتشامیدنی و آب مفطر) در شرایط ستون انجم
گرفت. شن مورد استفاده از نوع شن ساختمان بود که مقدار
کریتات (تعیین به روش تیتراسیون پرکشی) موجود در آن
75 درصد و مقدار ماده آلی آن تاجی نبود. در ترکیب شن مورد
استفاده شکل مختلط اکسیدهای آلی و آلومینات و یه‌کرتیس
داست (جدول 1).

تیمارهای آزمایشی شامل درصد‌های مختلف کریتات کلسیم
(صفر، 50 و 100 درصد) و سولفات کلسیم (صفر، 5 و 100
درصد) تولید شرکت مکرک (Merck) بود. به کم‌صرف وزنی با
ش مخلوط‌گردید. اندام‌زدایی بُر در سه‌گروه کنترل و کریتات
کلسیم در دامتان 2/0mm انتخاب شد. برخی از
ویژگی‌های فیزیکی و شیمیایی تیمارهای مختلف در جدول
۲ آورده شده است.

اندازه‌گیری ویژگی‌های تیمارهای آزمایشی
مخلوط‌ها به استفاده از دستگاه pH متر و هدهای الکتریکی
آنها با رسانایی سنج در نسبت‌های 0:5 مخلوط به آب آدازه‌گری
شد. به خاطر خاصیت تابوئی کریتات کلسیم ترکیبات
پهناه به مخلوط‌ها در pH مختلط با هم اتصالی داشته. دامنه تغییرات
در pH مخلوط‌های تیمار باکتری مورد مطالعه (سومودئا)
فلورسکن قابل تحلیل می‌باشد. رسانایی الکتریکی نمونه‌های
دارای سولفات کلسیم به دلیل حلالیت بالای آن دوره، تیمار
به تیمارهای دارای کریتات کلسیم بستر بود. نمک‌های محلول با
تأثیر بر قدرت برونی محلول، می‌توانند در فرآیند جذب باکتری
مه‌بند سولفات کلسیم و کریتات کلسیم از جمله نمک‌های با
حلالیت کم محصول می‌گردند (حاصل ضرب انحلال نسبی)
سولفات کلسیم و کریتات کلسیم به ترتیب برای
0/01 و 0/40 درصد تیمارهای آزمایشی چگالی حیاتی به
روش پیکنوم اندام‌گیری و چگالی ظاهری با دان شده‌اند. در
تیمارهای آزمایشی...
جدول 1: مقدار و شکل اکسیدهای آهن و آلومینیوم در شن مورد استفاده

<table>
<thead>
<tr>
<th>شکل ترکیب</th>
<th>بر حسب (g kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>آهن بلوری</td>
<td>21</td>
</tr>
<tr>
<td>آلومینیوم بلوری</td>
<td>8.34</td>
</tr>
<tr>
<td>آلومینیوم پیشرفته</td>
<td>0.23</td>
</tr>
<tr>
<td>آهن پیشرفته</td>
<td>1/10</td>
</tr>
</tbody>
</table>

جدول 2: برخی از ویژگی‌های فیزیکی و شیمیایی مخلوط‌های شن، کربنات و سولفات‌های کلسیم

<table>
<thead>
<tr>
<th>حجم سوپرسیون</th>
<th>حجم PV</th>
<th>درصد تخلخل کل</th>
<th>سوپرسیون هیدرولیک</th>
<th>هدایت الکتریکی</th>
<th>حفظ</th>
<th>pH</th>
<th>CaSO₄</th>
<th>CaCO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.70/2.35</td>
<td>44.5</td>
<td>19.77</td>
<td>2.48</td>
<td>0.05</td>
<td>7/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.80/2.28</td>
<td>27.0</td>
<td>19.77</td>
<td>2.48</td>
<td>0.05</td>
<td>7/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.00/1.64</td>
<td>27.0</td>
<td>19.77</td>
<td>2.48</td>
<td>0.05</td>
<td>7/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.00/2.0</td>
<td>27.0</td>
<td>19.77</td>
<td>2.48</td>
<td>0.05</td>
<td>7/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.80/1.64</td>
<td>27.0</td>
<td>19.77</td>
<td>2.48</td>
<td>0.05</td>
<td>7/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

واحد اهمیت است. همچنین سوپرسیون مصرفی 60 پی از استقرار سوپرسیون‌های آب‌یابی و تداوم شرایط حیاتی (Step injection) پس از اندازه‌گیری نمونه‌های آب‌یابی و تداوم شرایط حیاتی (Step injection) اشباع مادگی، تریک پترباخور سوپرسیون بلی (Nutrient broth) (14) صورت گرفت. حجمی از سوپرسیون باکتری از طریق یک وروت آن‌ها به آب‌های زیرزمینی از جنوب آلودگی محیط زیست

(1) باکتری سوپرسیون فلورنس در محیط کشت اختصاصی

(2) S1 خالص CaSO₄

(3) خالص CaCO₃

(4) NB

100
مخفیت سلول‌ها برای پیشرفت رشد و افزایش بیش از حد می‌تواند باید توسط افراد و سیستم‌های مناسب کنسل می‌شود.

decanter. با شدت جریان نباید بیش از حد نمایه سنجی دانه‌ها و فاسکولار میله‌ها برای پیشرفت رشد و افزایش بیش از حد می‌تواند باید توسط افراد و سیستم‌های مناسب کنسل می‌شود.

decanter. با شدت جریان نباید بیش از حد نمایه سنجی دانه‌ها و فاسکولار میله‌ها برای پیشرفت رشد و افزایش بیش از حد می‌تواند باید توسط افراد و سیستم‌های مناسب کنسل می‌شود.
بایان پاکتی در لایه‌های 15-20 و 15-20 سانتی‌متری در لایه‌های 15-20 سانتی‌متری سطون، اثر تیمار کریم‌سی و اثر مقدار تیمار (سولفات کلسیم) بر مقدار تیمار پاکتی با لایه‌ی شده در سطح 1 درصد معنی‌دار بود (جدول 1). اثر تیمار سولفات کلسیم در این لایه در سطح 5 درصد معنی‌دار بود (جدول 2).

فلزگی پاکتی با لایه‌ای شده در تیمار 5٪ کلسیم کلیسیم بیشتر از سایر تیمارها بود (جدول 5). در این لایه اثر مقدار کلسیم کلیسیم بر پاکتی با لایه‌ی شده به ترتیب کاهشهای 0.2، 0.15 و 0.1 سانتی‌متری بوده و این اثر به پیش‌بینی و نتیجه‌های عوامل بررسی‌گر معنا نداشت. در این لایه سولفات کلسیم بهبود نسبت به سایر تیمارها نشان داد که تیمار 5٪ سولفات کلسیم بیشتر از سایر تیمارها با لایه‌ی شده در این لایه پاکتی کردن (جدول 4) بیشترین مقدار سولفات کلسیم بر سطح پاکتی با لایه‌ی شده و کاهش فلزگی باکتری در زمان خروجی برای لایه‌ی شده است.

تیمار 10٪ سولفات کلسیم در ترکیب با 5٪ کلسیم کلیسیم در مقایسه با سایر تیمارها میزان پاکتی با لایه‌ی شبکه را نشان داد (جدول 4). در این تیمار افزایش قدرت بونی محفظه و تعداد بیشتر در سولفات کلسیم در جذب بیشتر باکتری مهم بوده است. تأثیر کمتر تیمارهای با مقدار بیشتر کلسیم کلیسیم را از می‌توان به دلیل استحکام پاکتی کلیسیم با لایه‌ی شبکه در این تیمار با میزان مار و میر به دلیل شبکه شارای اتماس زیست باکتری دانست. از طرف دیگر به توجه به رابطه زیر، کاهش سرعت آب منفی (Pore water velocity) یا سرعت آب منفی می‌تواند به دلیل (Pore water velocity) باعث آن باشد که سطح بیشتر باکتری در این لایه مبهم بود. میزان پاکتی در کلسیم در ترکیب با 5٪ کلسیم کلیسیم نسبت به بیماری دیگر معنی‌دار بود. علاوه بر سهم سولفات کلسیم، افزایش منفی کاهش سرعت آب منفی (Pore water velocity) به رطوبت حجمی) در تیمارهای سولفات کلسیم و کلسیم کلیسیم در جذب بیشتر باکتری در این لایه مهم بود. میزان پاکتی در کلسیم
جدول 3 تجزیه واریانس اثر تیمارهای آزمایشی بر توان پالایش لایه‌های مختلف سطح شن بر غلظت نسبی باکتری بالغانه

\(\frac{C_v}{C_b} \) (\(C_b \))

<table>
<thead>
<tr>
<th>کریت کلسیم</th>
<th>سولفات کلسیم</th>
<th>منبع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-20 cm</td>
<td>1-15 cm</td>
<td>5-10 cm</td>
</tr>
<tr>
<td>0/89</td>
<td>5/03</td>
<td>0/15</td>
</tr>
<tr>
<td>0/30</td>
<td>3/30</td>
<td>0/30</td>
</tr>
<tr>
<td>0/33</td>
<td>3/33</td>
<td>0/33</td>
</tr>
</tbody>
</table>

* و ** به ترتیب نشان دهنده تأثیر معنی‌دار در سطوح آماری 1 و 5 درصد می‌باشد.

جدول 4 مقایسه میانگین اثر تیمارهای سولفات و کریت کلسیم بر توان پالایش با غلظت نسبی باکتری شیپگداری شده \(C_v/C_b \) (\(C_b \)) در لایه‌های 1-15 سانتی‌متری سطح‌های شن

<table>
<thead>
<tr>
<th>منبع تغییر</th>
<th>کریت کلسیم</th>
<th>سولفات کلسیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/14</td>
<td>0/04</td>
<td>0/01</td>
</tr>
<tr>
<td>0/17</td>
<td>0/09</td>
<td>0/01</td>
</tr>
<tr>
<td>0/13</td>
<td>0/09</td>
<td>0/01</td>
</tr>
<tr>
<td>0/16</td>
<td>0/01</td>
<td>0/01</td>
</tr>
<tr>
<td>0/18</td>
<td>0/01</td>
<td>0/01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>منبع تغییر</th>
<th>کریت کلسیم</th>
<th>سولفات کلسیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/23</td>
<td>0/12</td>
<td>0/05</td>
</tr>
<tr>
<td>LSD (0/05)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در پژوهش انجام گرفته توسط لاس و جربا (16)، برداشت یافته که در جهت عمودی محصول بوده و عملکرد بالقوه، ویروس اثر کاربرد فلورس نیتریک جدید دستیابده یک خب شان لومی در شرایط اشباع 160 سانتی‌متری بوده. با علاوه بر فاکتورهای زیستی و شیمیایی مؤثر بر حکمت نیتریک، شرایط رطوبت و گونه ریزگاندنار نیز بر میزان انالالومه آنها مؤثرند. در لایه‌های 15-20 سانتی‌متری میانگین غلظت باکتری پالایش بالای شده در تیمارهای کریت کلسیم و سولفات کلسیم در ترکیب با 3/5 کمتر از کریت کلسیم به توجه بود (جدول 4) اثر تیمارهای کریت کلسیم و سولفات کلسیم در سطح آماری 5 درصد و اثر مقابل تیمارها در سطح آماری 1 درصد بر خلافندی باکتری پالایش شده در لایه‌های 20-45 سانتی‌متری معنی‌دار بود (جدول 3). کاهش میزان باکتری پالایش شده در لایه‌های بالایی می‌تواند به دلیل انطالال کمی باکتری به این لایه‌ها باشد.

103
جدول 5. مقایسه میانگین‌های اثر تیمارهای سولفات و کربنات کلسیم بر توان پالایش با غلظت نسبی باکتری نگهداری شده (C/Co) در لاچ 15-10 سانتی‌متری ستونه‌های شنی

<table>
<thead>
<tr>
<th>سولفات کلسیم</th>
<th>کربنات کلسیم</th>
<th>منع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/09</td>
<td>0/09</td>
<td>0/013</td>
</tr>
<tr>
<td>0/28</td>
<td>0/26</td>
<td>0/012</td>
</tr>
<tr>
<td>0/59</td>
<td>0/51</td>
<td>0/011</td>
</tr>
<tr>
<td>0/55</td>
<td>0/53</td>
<td>0/009</td>
</tr>
<tr>
<td>0/14</td>
<td>0/12</td>
<td>0/009</td>
</tr>
<tr>
<td>میانگین</td>
<td>0/09</td>
<td>0/013</td>
</tr>
</tbody>
</table>

شده حاصل از تیمارهای شاهد (شن خالص) > 5% کربنات کلسیم > 10% کربنات کلسیم = 20% کربنات کلسیم (میانگین همه تیمارهای سولفات کلسیم) بود (جدول 6). پلاک نشان داد که باکتری در لاچهای بالایی، کاهش باکتری استخراج شده در تیمارهای کربنات کلسیم نسبت به شاهد را توجه می‌نماید.

همچنین عدم استخراج کل باکتری‌های پالایش شده برای کربنات کلسیم می‌تواند اختلاف پالایش بین مقاکیر آنها را بیان کند. در این لاچ اثر مقاکیر سولفات کلسیم بر غلظت باکتری مشابه می‌باشد. البته در 3 لاچ، تیمار شاهد کمترین و تیمار 10% سولفات پلی‌نتر میزان پالایش باکتری را سبب شده (جدول 6). مقاکیر باکتری سولفات کلسیم اثر بیشتر بر پالایش باکتری دانستند. بر خلاف بدنان، این لاچ به دلیل شدت بیشتر بیشتری بیشتر بیشتر افزایش سولفات کلسیم، میزان پالایش باکتری در لاچهای بالایی به دلیل بالایی تریکس پیش از باکتری نسبی پالایش باکتری در لاچهای بالایی بیشتر بیشتر افزایش سولفات کلسیم است که در لاچهای بالایی، میزان پالایش باکتری کمتری بیشتر می‌باشد. در لاچهای بالایی، میزان پالایش باکتری کمتری
جدول ۱ مقایسه میانگین اثر تیمارهای سولفات و کربنات کلسیم بر توان بالایی گلخانه نسی پاکتری نگهداری شده (Cr/C0 در در وابسته‌ی ساتنی سطح‌های شنی)

<table>
<thead>
<tr>
<th>سولفات کلسیم</th>
<th>کربنات کلسیم</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۱۷</td>
<td>۰/۲</td>
<td>۰/۱۴</td>
</tr>
<tr>
<td>۰/۱۳</td>
<td>۰/۲</td>
<td>۰/۱۷</td>
</tr>
<tr>
<td>۰/۱۶</td>
<td>۰/۳۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۰/۱۵</td>
<td>۰/۳۲</td>
<td>۰/۲۴</td>
</tr>
<tr>
<td>۰/۱۹</td>
<td>۰/۴۲</td>
<td>۰/۲۴</td>
</tr>
</tbody>
</table>

لSD (۰/۰۵)

۰/۲۴۰

۰/۱۳۸

۰/۲۴۰

۰/۲۴۰

Cr(cfu gr\(^{-1}\times10^6\)) (الف)

Cr(cfu gr\(^{-1}\times10^6\)) (ب)

Cr(cfu gr\(^{-1}\times10^6\)) (ج)

Cr(cfu gr\(^{-1}\times10^6\)) (د)

شکل ۱. نمود چگالی یک کارگر در سطح‌های شنی: (الف) با مقدار مختلف سولفات کلسیم (بدون کربنات کلسیم)، (ب) با مقدار مختلف کربنات کلسیم (بدون سولفات کلسیم)، (ج) با ۱۰٪ سولفات کلسیم و با مقدار مختلف کربنات کلسیم، (د) با ۵٪ سولفات کلسیم و با مقدار مختلف کربنات کلسیم.
شکل ۲ اثر تیمارهای آزمایشی بر ضرب بالاپیش (λ) باکتری در ستونهای شن

نتیجه بالاپیش بیشتر باکتری نقش داشت و در احتمالاً حل شدن و خروج این کانی از محفظ در انتقال بیشتر باکتری به خارج از ستونهای نیز مؤثر می‌باشد. ضرب بالاپیش در تیمارهای کلسیم کلسیم در ترکیب با سلنیوم کلسیم کاهش یافته است. حل شدن و خروج سلنیوم کلسیم از یک سو و رسوب آن روي ذرات کلسیم از سوی دیگر از بالاپیش بیشتر باکتری می‌کاهد. همچنین با حل شدن سلنیوم کلسیم، غلظت برون SO₄⁻ قابل قبولی از محیط افزایش یافته که می‌تواند با باکتری برای جذب روي مکانیکی دارای بار مثبت رقابت کند.

نتیجه گیری

وجود ۷/۵ درصد کلسیم، مقادیری آهن و آلومینوم به ریخته‌های پایه و به ویژه بالاپیش لیزیکی می‌تواند از عوامل مهم بالاپیش باکتری در شن مورد استفاده باشد. نتایج بدست آمده نشان داد که کلسیم بطور معتدل و قابل توجهی توان بالاپیش خاک را افزایش می‌دهد. علاوه بر اثر بالاپیش سطحی و فقرت برنی تیمارهای سلنیوم کلسیم و کلسیم الکلول، افزایش اعوجاج منفی در اثر افزودن آنها و در نتیجه کاهش سرعت آب منفی می‌تواند در برای مقادیر ۱۵/۰ و ۲۰/۰ کلسیم کلسیم مشاهده شد که می‌تواند به دلیل عدم استخراج کل باکتری در این لایه و یا وجود شرایط نامناسب برای زندگی ماندنی باکتری‌ها و در نتیجه مرگ و میر آنها باشد.

در تیمارهای سلنیوم کلسیم پدیده اثر مشترک اتفاق می‌افتد و با توجه به تشکیل بیشتر زوج پوستی CaSO₄، انحلال‌پذیری کلسیم کلسیم در حضور سلنیوم کاهش می‌یابد. تیمار ۱۰٪ سلنیوم کلسیم نسبت به تیمار ۵٪ سلنیوم کلسیم کمتری را نشان داد (شکل‌های ۱–ج و ۱–د).

ضریب بالاپیش باکتری (λ)

همان‌طور که در شکل ۲ مشاهده می‌شود، ضرب بالاپیش باکتری (λ) برای تیمارهای بدون سلنیوم کلسیم، با افزایش میزان کلسیم کلسیم روند افزایشی را نشان می‌دهد. تیمارهای ۵ و ۰ درصد سلنیوم کلسیم دارای ۰/۰ تقریباً یکسانی بودند. با افزایش مقدار کلسیم در ترکیب با مقادیر ۰ و ۵ درصد سلنیوم کلسیم می‌باشد. اگر چه انحلال سلنیوم کلسیم در افزایش سرعت بینی محصول و در...
كلسیم و به وجود یافته‌کردن کلسیم در خاک‌هایی که توانایی ذخیره‌کننده‌ای دارند تا تیمار و روند نیز نابسامان

خلال آن کمتر و وجود سطح بالای‌شتری زياد کردن کلسیم و اثر نتیجه‌گیری این اثرات بر انتقال باکتری در دنیا تیمار دانست. بررسی پارامتر ضرب بالای‌شتری باکتری نشان از اثر این دو تیمار بر انتقال باکتری در شرایط رطوبتی انشعاب داشت. نتایج این پژوهش نشان می‌دهد که حاکم‌های دارای کانال‌های کریپیتاس و سولفات‌های بوشی اثر کادر پاپاکریپیت می‌کنند در شرایط رطوبتی اشباع بوده و در امور تصفیه‌ای و بهداشتی قابل استفاده می‌باشند. به خاطر مقدار زیاد و اهمیت سولفات

متابع مورد استفاده

