یک مدل نیمه تجربی به منظور تخمین ابعاد جبهه رطوبی در آب‌ریز

جمال عباس بلنگی و علی محمد آخوند‌علی

(تاریخ دریافت: 85/11/30، تاریخ پذیرش: 86/4/18)

چکیده

در هنگام طراحی یک سیستم آب‌ریزی قطع‌ریز، لازم است انتخاب یک جهت مخصوص بر اساس سایت‌های مختلف باشد. در این پژوهش، با توجه به متغیرهای مختلف در آب‌ریزی، یک مدل نیمه‌تجربی به منظور تقسیم‌بندی ابعاد جبهه رطوبی در آب‌ریز ایجاد شد.

واژه‌های کلیدی: آب‌ریزی قطع‌ریز، منع نطفه‌ای، جبهه رطوبی، آئین‌نامه استفاده

مدت‌های نیمه‌تجربی به منظور استفاده در کارهای نظامی به کار می‌رود. با توجه به موارد مختلف در تحقیق، این مدل به منظور استفاده در سیستم‌های آب‌ریزیی به کار می‌رود.

* Palangi_47@yahoo.com

1. به ترتیب کارشناس ارشد و استادار مهندس آب، دانشکده کشاورزی، دانشگاه شهید چمران اهواز
2. مسئول مکاتبات، پست الکترونیکی: *
روش آب‌یابی قطره‌ای با راندمان بالاتری نسبت به سایر روش‌های آب‌یابی در دنبای مرسوم شده است و به عنوان قابلیت‌های خاصی که دارد در برخی از شرایط خاص (مانند آبیاری در خاک‌های سنگ) نهایاً سیستم آب‌یابی مناسب تلقی می‌گردد.

برای آگاهی از اینکه قطره چکان مورد نظر سطح داخلی در سطح خاک را خیس می‌کند یا نه، نیاز به مشخص بودن الگوی رطوبتی خاصه می‌باشد. بر اساس این الگوها می‌توان فاصله قطره‌چکان را تعیین نموذ. به‌عنوان مثال در خاک‌های حیات به‌دلیل سرعت عمودی آب و بازیابی کننده‌های رطوبتی فاصله قطره چکان‌ها را تندیکی‌تر در نظر می‌گیرند. در حالتی که در خاک‌های رسی به‌عنوان قطره آب به‌یک تر بودن الگوهای رطوبتی، فاصله قطره چکان‌ها را یک‌پایه بردارن.

مدت زمان آب‌یابی نیز بستگی دارد به اینکه چه زمانی پس از شروع آب‌یابی جهه رطوبتی به عمق ریشه‌گیوهای ای سایر از آن بررسی کنیم. رشتهای و زمان آب‌یابی قطره‌ای باید به طور مه‌گامی گردد که حجم خاک مربوط شده به حجم ریشه‌گیوهای ایکه تشکل شود. بنابراین آگاهی از شکل و حجم خاک‌های شست به از زیر قطره‌چکان به‌منظور تأمین نیاز آب‌گای مدیریت بهینه و افزایش راندمان آب‌یابی ضروری است.

کلر و همکاران جدول ارائه کرده‌اند به صورت خیس شده در زیر هر قطره‌چکانی را به ارزی 2 لیتر در ساعت و سه تحقیقات زیادی نیز در زمینه حل عدید و تحلیلی معادله ریچاردز انجام شده و مدل‌های عدید متغیرهای مانند CSMP برای اندازه‌گیری و مدل‌های ای‌پی‌سی‌اس‌آب و HYDRUS-2D شبکه الگوهای رطوبتی و پروفیل خیس شده خاک از خود نشان داده‌اند (8، 9، 13، 17 و 18). معمولاً دیقه‌ترين و بهترین روش برای تعیین ابعاد پایه رطوبتی حل معادله ریچاردز تحت شرایط اولیه و مرزی مورد نظر می‌باشد. علی‌رغم در سال‌های گذشته بودن ریاباین و مدل‌های عدید گوناگونی که برای شیب‌سازی حکمت آب در خاک در دنیا وجود دارد به عنوان عدم دسترسی آسان به معمین نسبت به زمان ثابت نیست بلکه تغییر می‌کند لذا با استفاده
مقدار الاداء‌گذاری شده معمول دار نبوده ولی برای آبنده 5/78
لیتر در ساعت این اختلاف معنی‌دار بوده است.

خانجی‌تی و بارانی (2) نیز به بررسی توزیع رطوبتی خاک
زیر طبقه‌چکان در ایل‌آزار طبقات برداشته و مسئو کردن که
اعلام هندسی رطوبتی خاک را با روش‌های مختلف به دست
آورند، و انداده آن را به صورت تابعی از سایر پارامترهای گیاهی و
خاک محاسبه کنند. این تحقیقات آنها نشان می‌دهد که معادلات
به دست آمده در سطح مزرعه‌ای برای مدیریت ایل‌آزار کافی‌ست
و می‌توانند از ایل‌آزار وارد گردد. اگرچه برای به دست آوردن
معادلات مربوط به بردار ساده‌سازی در رابطه بین آب و خاک
و گیاه صورت گرفته است.

تربیت و صدرقلدانی (1) طریق را در 6 منطقه واقع در استان
اصفهان و خراسان و در خاک‌های با فاصله‌های متفاوت اجرای
نمودند که بر اساس آن مدل شوهرزمن و زور را مورد ارزیابی
قرار دادند. نتایج آنها دلته بر اکانت استفاده موفقیت آمیزی از
این مدل در پیش‌بینی فاصله پهلو چکانها دارد.

مرزایی و همکاران (5) به مبنای نمود سازی جهه رطوبتی,
روابطی را با دخالت عوامل قابلی تأثیر بر حجم خاک مرطوب
شده در زیر منع تعیین خطر و با استفاده از قضیه
باکیفیت و آنالیز ایجادی به دست آورند. در نهایت این روابط
با داده‌های اندازه‌گیری شده و استحکام شد و روابط علمی-تبریزی
3 و 4 به دست آمده که خوشه‌ای بسیار خوبی با تأثیر می‌آیدشی‌ها نشان
داد. علاوه بر آن معادلات ارائه شده تابعی از زمان‌هایی و در
هر زمان اکنون ممحاسبه قطر و عمق خاک بسیار خوبی وجود دارد.

$$d = 0.112 k_b (4^{-0.18}) q (0.011)^{0.64}$$

$$z = 0.184 k_a (0.001) q (0.011)^{0.59}$$

و 4 مدت زمان آپارهای می‌باشد.

بنابراین انجام آزمایش‌های تجربی در مزرعه و ایجاد
روابطی بین پایان خاک، به دقت قطره، حجم آب فندو به
به زمین حجم خاک بسیار، قطر و عمق باید رطوبتی
به مبنای دستیابی به روابطی تجربی که به‌ویژه در طرافی و

خصوصیات هیدروپاتی خاک‌ها و نیز فکر کنم شیب‌سازی در داخل
کشور می‌توانند سیستمهای آبیاری
تغییر بتواند به استفاده از روش‌های مذکورد دانست و کمتر
این قبل روی شدا برای به دست آوردن ابعاد پیاز رطوبتی و یا
تعیین پرتوپل خاک بسیار استفاده می‌کنند.

نشان داده‌های این (16) از اولین کسانی بودند که به مبنای
تعداد ابعاد پیاز رطوبتی و در نهایت تعمیم فاصله قطره
چکان‌های گاه‌های مورد استفاده نشان داده‌اند روابط نیمه
تجربی را برای تعیین ابعاد پیاز رطوبتی به ارزیابی منبع تغذیه
قطعی و خطی به دست آورند. رابطه آنها به ارزیابی منبع تغذیه
قطعی به فرم زیر می‌باشد:

$$d = 1.32 q - 0.35 \frac{y}{k_b} - 0.33$$

$$d$$ که قطرپهلو چکان، $$k_b$$ هدایت هیدروپاتی اشباع شاخ، $$q$$
حداکثر قطر و $$y$$ عمق خاک بسیار می‌باشد.

نورو (20) این تحقیق را به مبنای اجزای و ابتکار یک جهان
طرحی انجام داد بهطوری که قبل از پیوست کردن یک طرح
ایل‌آزار طبقات ایجاد می‌کند و با توجه
تغییر دهنده‌های دارد. در این رابطه در خانه‌بندی به ترتیب دی‌بی، عمق و قطر
خاک خارج شده، حجم خاک بسیار شده بر اساس فرمولی که
به وسیله شوهرزمن و زور پیشنهاد شده، محاسبه خردی
داسی گر و برسیل (12) به مبنای نمود دردست آوردن شعاع جهه
رابطه در ایل‌آزار طبقاتی را حاصل تقریبی را برای
معادله حرکت آتربه نمودند.

راس و جزنس (24) روش پیشنهادی شد به توسط داسیرگ
و برسیل را اصلاح نمودند بهطوری که تا پارامترهای مورد نیاز
برای پیش‌بینی شعاع خیس شده که از آب‌دهی قطره
چکان، ناپایداری و پایداری آب خاک می‌باشد.

مزرعه‌های آنها روی خاک لومی شنی و براز دو مقدار آب‌دهی
3/79 و 3/75 لیتر در هر متر مربع داشتند که به مقدار خیس شده
پیش‌بینی شده در حدود 11% با مقدار اندازه‌گیری شده
اختلاف داشتند. همچنین برای مقدار آب‌دهی 3/8 لیتر در
ساعت اختلاف بین مقدار سطح خیس شده پیش‌بینی شده با

78
در این کشورهای اسلامی این گونه مناطق وجود دارد که در بعضی از مناطق این پژوهش به منظور دستیابی به روابط ساده، تجزیه و دارای یکی از طریقه از طریقه انجام شده است.

در هر زمان دلخواه پس از شروع آبیاری وجود خواهد داشت.

نتایج تحقیق

برداشت ما از غواصی فیزیکی حاکم بر حرکت آب خاک در اطراف یک منبع نفوذی است که شکل هندسی جرم خاک خیس شده در پایان آب آبیاری به نوع خاک، دیس قطوریکان (V) و کل حجم آب وارد به خاک (Q) و دامنه آبیاری (T) بستگی دارد.

شکل هندسی پیمان رطوبی در بهترین حالت بصورت حداکثر قطر (D) و عمق خاک (Z) خیس شده بیان می‌شود.

کانون داده (Ks) نوع خاک به وسیله هیدرولیکی اشغال می‌شود.

برای شناخت پارامترهای مؤثر بر یک پدیده که رابطه بین آنها مشخص شده نیست آن‌الات اباعب روش مانندی می‌باشد.

یکی از فرضیات مهم آن‌الات اباعب در مکانیک سیالات قطعه π
سانتی مترمکعب (حجم 66666 متر مکعب) به عنوان مخزن اصلی استفاده شد و برای ثابت نگه داشتن فشار آب نیز از قانون ترمو‌گیک استفاده گردید. در ابتدای نقطه‌چک‌های مورد آزمایش برای رسیدن به دیگر های ۱، ۲، ۳ و ۴ لیتر در ساعت تنظیم شدند. بعد از آزمایش‌های اولیه مشخص گردید که در صورت استفاده از میکروتیپ‌ها و تغییر طول و قطر آنها (دبی ۴ و ۳ لیتر در ساعت) و یا با وارد کردن لوله‌های باریک‌تر و بی‌چیدار در داخل لوله‌های میکروتیپ (دبی ۵ و ۴ لیتر در ساعت)، می‌توان از استفاده از یک چنین کمتر به راحتی دیگری نیز را انتخاب کرد و جوی هندسی اصلی تمایل دیگری مورد نظر بیشتر قطرچک‌ها از این نوع انتخاب شدند.

یکی از نکات مهمی که در آزمایش‌ها یافتند، به مزیت اتصال دادن شد و آزمایش‌های مورد ارزیابی برای به دست آوردن کاهش طول و قطری رایج از طریق راه‌حل شد. نتایج این کاهش و افزایش طول و قطری را به عنوان دو عامل مهم در این آزمایش‌ها مورد بررسی قرار گرفتند.

دیگر براحی روابط نسبی بین پارامترهای بدند بعد به ترتیب مقدار * d و z * v در بردار * v ملاحظه شد که می‌توان از آنها رابطه توانی به صورت زیر برقرار نمود.

\[d = A_1 \times v \times n \]

\[z = A_1 \times v \times n \]

\[d = A_1 \times k_1 \times (\frac{r}{h}) \times (\frac{1}{\theta}) \times (\frac{1}{n}) \]

\[z = A_1 \times k_1 \times (\frac{r}{h}) \times (\frac{1}{\theta}) \times (\frac{1}{n}) \]

در مراحل ۱ و ۲ و ۳ و ۴ لیتر در ساعت تنظیم شدند. بعد از آزمایش‌های اولیه مشخص گردید که در صورت استفاده از میکروتیپ‌ها و تغییر طول و قطر آنها (دبی ۴ و ۳ لیتر در ساعت) و یا با وارد کردن لوله‌های باریک‌تر و بی‌چیدار در داخل لوله‌های میکروتیپ (دبی ۵ و ۴ لیتر در ساعت)، می‌توان از استفاده از یک چنین کمتر به راحتی دیگری نیز را انتخاب کرد و جوی هندسی اصلی تمایل دیگری مورد نظر بیشتر قطرچک‌ها از این نوع انتخاب شدند.

یکی از نکات مهمی که در آزمایش‌ها یافتند، به مزیت اتصال دادن شد و آزمایش‌های مورد ارزیابی برای به دست آوردن کاهش طول و قطری رایج از طریق راه‌حل شد. نتایج این کاهش و افزایش طول و قطری را به عنوان دو عامل مهم در این آزمایش‌ها مورد بررسی قرار گرفتند.

دیگر براحی روابط نسبی بین پارامترهای بدند بعد به ترتیب مقدار * d و z * v در بردار * v ملاحظه شد که می‌توان از آنها رابطه توانی به صورت زیر برقرار نمود.

\[d = A_1 \times v \times n \]

\[z = A_1 \times v \times n \]

\[d = A_1 \times k_1 \times (\frac{r}{h}) \times (\frac{1}{\theta}) \times (\frac{1}{n}) \]

\[z = A_1 \times k_1 \times (\frac{r}{h}) \times (\frac{1}{\theta}) \times (\frac{1}{n}) \]

\[d = A_1 \times k_1 \times (\frac{r}{h}) \times (\frac{1}{\theta}) \times (\frac{1}{n}) \]

\[z = A_1 \times k_1 \times (\frac{r}{h}) \times (\frac{1}{\theta}) \times (\frac{1}{n}) \]

مقدار عمل جهش رطوبی و حداکثر قطر رطوبی به ازای هر زمان کارگر نقطه‌چک‌ها، برای انجام محاسبات مربوطه و مراحل بعدی تحقیق انتخاب گردید (جدول ۲ و ۳). در جدول ۱ خصوصیات فیزیکی خاک مورد مطالعه درج شده است. درصد اشباع خاک‌های بالاجی بین ۲۷ تا ۲۸ درصد وزنی و وزن مخصوص ظاهری شن های روان بالاجی ۱۵۵ و وزن مخصوص حقیقی ۲۰/۵ گرم بر سانتی‌متر مکعب می‌باشد. مقادیر هدایت الکتریکی ۵/۵۳ میلی‌متر سانتی‌متر بر متر هیدرولیک و باریکی به عنوان دو عامل مهم در این آزمایش‌ها مورد بررسی قرار گرفتند. این باریکی الکتریکی در محور باریک و حداکثر قطر رطوبی به سمت وزنی ۲/۵۸ درصد وزنی است. در ضمن

مواد و روش‌ها
این آزمایش در آستانه ماه سال ۱۳۸۲ در ایستگاه تحقیقاتی منابع طبیعی استان خوزستان، تهیه شد که مورد نظر را وضع کرده و ۲۴ کیلو متر جاده‌ای از دویستی به فاصله ۳۱ درجه و ۲۰ دقیقه شمالی و طول ۴۸ درجه و ۴۰ دقیقه شرقی از جنوب بوده است. در این آزمایش آب‌های آبیاری نیز برای انجام این آزمایش‌ها قرار گرفتند. البته میزان شاخص چاپ برای بررسی این باریکی الکتریکی در محور باریک و حداکثر قطر رطوبی به سمت وزنی ۲/۵۸ درصد وزنی است. در ضمن
شکل 1. پیاز رتوشی حاصل از قطره‌کان با دبی 5 لیتر در ساعت پس از
5 ساعت کارکرد (3)

جدول 1. دانه بندی خاک مورد آزمایش

<table>
<thead>
<tr>
<th>شن متوسط</th>
<th>شن ریز</th>
<th>شن خیلی ریز</th>
<th>شن متوسط</th>
<th>شن ریز</th>
<th>شن خیلی ریز</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 - 0.2</td>
</tr>
<tr>
<td>0.1 - 0.2</td>
</tr>
<tr>
<td>0.1 - 0.2</td>
</tr>
</tbody>
</table>

نتایج

هدایت هیدرولیکی خاک مورد آزمایش 240 متر بر ساعت می‌باشد (3).

با اعمال مقادیر فوق در معادلات 9 و 10 خواهیم داشت:

\[A_1 = \frac{t}{2} \gamma k_s \left(\frac{t}{2} \right) \left(\frac{t}{3} \right) \]

\[A_2 = \frac{v}{2} \gamma k_s \left(\frac{v}{2} \right) \left(\frac{v}{3} \right) \]

برای تبعیض d و \(A_1, A_2, n_1, n_2 \) در رمزنامه V* و \(A_1, A_2, n_1, n_2 \) در رمزنامه Z* نشان داده شده است. سپس با استفاده از رگرسیون و برآش
<table>
<thead>
<tr>
<th>Ze (cm)</th>
<th>Zo (cm)</th>
<th>V (m3)</th>
<th>t (min)</th>
<th>q (lit/hr)</th>
<th>ردید</th>
<th>RMSE (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/5</td>
<td>25/6</td>
<td>24/5</td>
<td>6/0</td>
<td>0/025</td>
<td>1</td>
<td>/3/8</td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>70</td>
<td>6/0</td>
<td>0/025</td>
<td>2</td>
<td>/3/8</td>
</tr>
<tr>
<td>8</td>
<td>83</td>
<td>79</td>
<td>6/0</td>
<td>0/04</td>
<td>3</td>
<td>/3/8</td>
</tr>
<tr>
<td>0</td>
<td>42</td>
<td>42</td>
<td>6/0</td>
<td>0/01</td>
<td>4</td>
<td>/3/8</td>
</tr>
<tr>
<td>3</td>
<td>75/5</td>
<td>74</td>
<td>6/0</td>
<td>0/04</td>
<td>5</td>
<td>/3/8</td>
</tr>
<tr>
<td>9</td>
<td>38/2</td>
<td>35</td>
<td>6/0</td>
<td>0/01</td>
<td>6</td>
<td>/3/8</td>
</tr>
<tr>
<td>3</td>
<td>60/8</td>
<td>59</td>
<td>6/0</td>
<td>0/03</td>
<td>7</td>
<td>/3/8</td>
</tr>
<tr>
<td>2/6</td>
<td>68/7</td>
<td>72</td>
<td>6/0</td>
<td>0/04</td>
<td>8</td>
<td>/3/8</td>
</tr>
<tr>
<td>8/6</td>
<td>27</td>
<td>25</td>
<td>6/0</td>
<td>0/05</td>
<td>9</td>
<td>/3/8</td>
</tr>
<tr>
<td>2/6</td>
<td>43</td>
<td>41</td>
<td>6/0</td>
<td>0/015</td>
<td>10</td>
<td>/3/8</td>
</tr>
<tr>
<td>2/8</td>
<td>57/6</td>
<td>56</td>
<td>6/0</td>
<td>0/03</td>
<td>11</td>
<td>/3/8</td>
</tr>
<tr>
<td>9/8</td>
<td>65</td>
<td>72</td>
<td>6/0</td>
<td>0/04</td>
<td>12</td>
<td>/3/8</td>
</tr>
<tr>
<td>5/3</td>
<td>29/5</td>
<td>28</td>
<td>6/0</td>
<td>0/08</td>
<td>13</td>
<td>/3/8</td>
</tr>
<tr>
<td>12</td>
<td>39</td>
<td>35</td>
<td>6/0</td>
<td>0/132</td>
<td>14</td>
<td>/3/8</td>
</tr>
<tr>
<td>12</td>
<td>51/8</td>
<td>50</td>
<td>6/0</td>
<td>0/268</td>
<td>15</td>
<td>/3/8</td>
</tr>
</tbody>
</table>

Root mean square error (RMSE)

\[Z_e = 0.9418Z_o + 0.0258, R^2 = 0.9622 \]
جدول 3 مقایسه بین مقادیر قطر جبه رطوبی اندازه‌گیری (\(d_i\)) و برآورده شده (\(d_{\text{r}}\))

<table>
<thead>
<tr>
<th>خطیات نسبی (%)</th>
<th>(d_i) (m)</th>
<th>(d_{\text{r}}) (m)</th>
<th>(V) (m³)</th>
<th>(t) (min)</th>
<th>(q) (lit/hr)</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>0.30</td>
<td>0.34/0.35</td>
<td>0/0.25</td>
<td>0/0.05</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0.75</td>
<td>0.24/0.25</td>
<td>0.24</td>
<td>0/0.04</td>
<td>0/0.1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0.15</td>
<td>0.12/0.11</td>
<td>0.12</td>
<td>0/0.02</td>
<td>0/0.01</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0.10</td>
<td>0.06/0.06</td>
<td>0.06</td>
<td>0/0.01</td>
<td>0/0.01</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>0.08</td>
<td>0.02/0.02</td>
<td>0.02</td>
<td>0/0.01</td>
<td>0/0.01</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>0.05</td>
<td>0.00/0.00</td>
<td>0.00</td>
<td>0/0.01</td>
<td>0/0.01</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0.03</td>
<td>0.00/0.00</td>
<td>0.00</td>
<td>0/0.01</td>
<td>0/0.01</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>0.01</td>
<td>0.00/0.00</td>
<td>0.00</td>
<td>0/0.01</td>
<td>0/0.01</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00/0.00</td>
<td>0.00</td>
<td>0/0.01</td>
<td>0/0.01</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>0.03</td>
<td>0.00/0.00</td>
<td>0.00</td>
<td>0/0.01</td>
<td>0/0.01</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>0.05</td>
<td>0.00/0.00</td>
<td>0.00</td>
<td>0/0.01</td>
<td>0/0.01</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>0.07</td>
<td>0.00/0.00</td>
<td>0.00</td>
<td>0/0.01</td>
<td>0/0.01</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>0.08</td>
<td>0.00/0.00</td>
<td>0.00</td>
<td>0/0.01</td>
<td>0/0.01</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>0.09</td>
<td>0.00/0.00</td>
<td>0.00</td>
<td>0/0.01</td>
<td>0/0.01</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>0.10</td>
<td>0.00/0.00</td>
<td>0.00</td>
<td>0/0.01</td>
<td>0/0.01</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

\[\text{RMSE (cm)} \]

نتایج حاصل از رگرسیون

\[d_{e} = 1.0708 \cdot d_{i} - 0.0374, \quad R^2 = 0.9367 \]

در محاسبه ماکریمیم عمق جبه رطوبی نیز بین 0 تا 3 درصد (به‌طور میانگین 0/5 درصد) بوده که در 60 درصد موارد مقادیر پیش‌بینی شده توسط مدل پیش‌بینی واقعی بوده است. این مقادیر خط‌ای کمتر از 0/5 درصد خط‌ای بوده‌اند. این مشاهده با توانایی و صدقاقت (1) در بافت‌های مختلف خاک می‌باشد. البته آنها نیز حداقل صفر درصد خط‌ها را در محاسبات خود بدهست آورده‌اند. همین‌طور کمتر از 11 تا 19 درصد خط‌هاست که رایس و چنس (14) برای پیش‌بینی شعاع خیس شده توسط یک قطره‌پکش در خاکی با بانگ لومی

شینی به دست آورده‌ن.
مقادیر اندازه‌گیری شده و برآورده شده قطر و عمق خیس شدن در شکل‌های ۲ و ۳ نشان داده شده است. همان‌طوری که مشاهده می‌شود ضریب همبستگی قطر خیس شده اندازه‌گیری شده (\(d\)) و قطر خیس شده برآورده شده (\(d\))، \(R^2 = 0.9786\) بوده (شکل ۵) و ضریب همبستگی عمق خیس شدن شده (\(z\)) و برآورده شده (\(z\)) نیز \(R^2 = 0.9858\) (شکل ۶) می‌باشد که در برای ضرایب درجه شده توسط میرزابی و همکاران (به ترتیب \(0.999\) برای \(d\) و \(0.992\) برای \(Z\)) (۵) و شوارتزمن و زور (۹۹) برای
قطره چکانها و تعیین فاصله بین قطره‌چکانها به‌منظور طراحی و مدیریت بهینه سیستم آبیاری قطره‌ای در منطقه مورد مطالعه استفاده نمود. علاوه بر این، نهایی جداول مشابه جدول کنار و همکاران با استفاده از روابط به دست آمده به طراحان سیستم‌های آبیاری قطره‌ای کمک شایانی می‌نماید(۴).

نتیجه‌گیری

با توجه به مشکلات موجود برای تعیین شکل پیاز رطوبتی انجام آزمایش‌های مزرعه‌ای و عدم امکان استفاده از مدل‌های عددی، نتایج بدست آمده دلتنت بر امکان موافقت آمیز از روابط به‌دست آمده دارد و می‌توان از نتایج حاصله در انتخاب...