بررسی توسعه ریشه ذرت و تأثیر آن بر کاهش مصرف آب در روش‌های مختلف آبیاری با پساب در دشت نیمه‌خشک کربال در استان فارس

محمدعلی ابراهیم‌زاده و علی مراد حسینی

(تاریخ دریافت: 85/11/30; تاریخ پذیرش: 85/8/29)

چکیده

عمل ریشه یکی از پارامترهای تأثیرگذار در محاسبه مقدار آب قابل نگهداری در محدوده ریشه‌گاه و برنامه‌ریزی آب‌های محصول می‌شود. مطالعه حاضر با هدف بررسی روند توسعه ریشه در طول فصل رشد گیاه ذرت در روش‌های مختلف آبیاری با دو کیفیت متفاوت آب نیاز به بررسی گوناگونی از یک سو به بررسی چگونگی ت刌یب ریشه در نیم‌ریز برآوردی در نیم‌ریزی بالا گیاه در سرمه‌ای تیکه‌ای، طوری که در طراحی تحقیقی حساسیت بررسی‌ها در سطحی از طریق آزمایشات کشت 실험ی رشته در نیم‌ریزی بالا مورد استفاده قرار گرفت. تابع تجزیه واریانس نشان داد اگر چه پیشرفت عمل ریشه در آبیاری قطره‌ای زیرسطحی و کوتاه آن در آبیاری تیکه‌ای مشاهده شد، اما عمل به‌طور میانی تحت تأثیر آبیاری و کیفیت آب آبیاری قرار گرفت. در این تحقیق، مدل حاکی بر ریشه در طول فصل رشد تجدید و دقت آن برای شرایط انجام آزمایشات کوتول گردید. عمل به‌طور میانی تحت تأثیر ریشه در نیم‌ریزی بالا مورد استفاده قرار گرفت. تابع تجزیه واریانس نشان داد اگر چه پیشرفت عمل ریشه در آبیاری قطره‌ای زیرسطحی و کوتاه آن در آبیاری تیکه‌ای مشاهده شد، اما عمل به‌طور میانی تحت تأثیر آبیاری و کیفیت آب آبیاری قرار گرفت. در این تحقیق، مدل حاکی بر ریشه در طول فصل رشد تجدید و دقت آن برای شرایط انجام آزمایشات کوتول گردید. عمل به‌طور میانی تحت تأثیر ریشه در نیم‌ریزی بالا مورد استفاده قرار گرفت. تابع تجزیه واریانس نشان داد اگر چه پیشرفت عمل ریشه در آبیاری قطره‌ای زیرسطحی و کوتاه آن در آبیاری تیکه‌ای مشاهده شد، اما عمل به‌طور میانی تحت تأثیر آبیاری و کیفیت آب آبیاری قرار گرفت. در این تحقیق، مدل حاکی بر ریشه در طول فصل رشد تجدید و دقت آن برای شرایط انجام آزمایشات کوتول گردید. عمل به‌طور میانی تحت تأثیر ریشه در نیم‌ریزی بالا مورد استفاده قرار گرفت. تابع تجزیه واریانس نشان داد اگر چه پیشرفت عمل ریشه در آبیاری قطره‌ای زیرسطحی و کوتاه آن در آبیاری تیکه‌ای مشاهده شد، اما عمل به‌طور میانی تحت تأثیر آبیاری و کیفیت آب آبیاری قرار گرفت. در این تحقیق، مدل حاکی بر ریشه در طول فصل رشد تجدید و دقت آن برای شرایط انجام آزمایشات کوتول گردید. عمل به‌طور میانی تحت تأثیر ریشه در نیم‌ریزی بالا مورد استفاده قرار گرفت. تابع تجزیه واریانس نشان داد اگر چه پیشرفت عمل ریشه در آبیاری قطره‌ای زیرسطحی و کوتاه آن در آبیاری تیکه‌ای مشاهده شد، اما عمل به‌طور میانی تحت تأثیر آبیاری و کیفیت آب آبیاری قرار گرفت. در این تحقیق، مدل حاکی بر ریشه در طول فصل رشد تجدید و دقت آن برای شرایط انجام آزمایشات کوتول گردید. عمل به‌طور میانی تحت تأثیر ریشه در نیم‌ریزی بالا مورد استفاده قرار گرفت. تابع تجزیه واریانس نشان داد اگر چه پیشرفت عمل ریشه در آبیاری قطره‌ای زیرسطحی و کوتاه آن در آبیاری تیکه‌ای مشاهده شد، اما عمل به‌طور میانی تحت تأثیر آبیاری و کیفیت آب آبیاری قرار گرفت. در این تحقیق، مدل حاکی بر ریشه در طول فصل رشد تجدید و دقت آن برای شرایط انجام آزمایشات کوتول گردید. عمل به‌طور میانی تحت تأثیر ریشه در نیم‌ریزی بالا مورد استفاده قرار گرفت. تابع تجزیه واریانس نشان داد اگر چه پیشرفت عمل ریشه در آبیاری قطره‌ای زیرسطحی و کوتاه آن در آبیاری تیکه‌ای مشاهده شد، اما عمل به‌طور میانی تحت تأثیر آبیاری و کیفیت آب آبیاری قرار گرفت. در این تحقیق، مدل حاکی بر ریشه در طول فصل رشد تجدید و دقت آن برای شرایط انجام آزمایشات کوتول گردید. عمل به‌طور میانی تحت تأثیر ریشه در نیم‌ریزی بالا مورد استفاده قرار گرفت. تابع تجزیه واریانس نشان داد اگر چه پیشرفت عمل ریشه در آبیاری قطره‌ای زیرسطحی و کوتاه آن در آبیاری تیکه‌ای مشاهده شد، اما عمل به‌طور میانی تحت تأثیر آبیاری و کیفیت آب آبیاری قرار گرفت. در این تحقیق، مدل حاکی بر ریشه در طول فصل رشد تجدید و دقت آن برای شرایط انجام آزمایشات کوتول گردید. عمل به‌طور میانی تحت تأثیر ریشه در نیم‌ریزی بالا مورد استفاده قرار گرفت.

واژه‌های کلیدی: مدل توسعه ریشه، ذرت، قطره‌ای زیرسطحی، قطره‌ای تیکه‌ای، پساب، فاضلاب

مقدمه

بر اساس شاخه فلوکس مارک، کشور ایران در آستانه قرار گرفتن در بحران آبی است (1). مدیریت مصرف آب که منجر به بهره‌وری بیشتر آب در بخش کشاورزی می‌شود، می‌تواند

مقدار

نیاز بسیار مهمی در مصرف بهینه آب کشور داشته باشد (6). این امر مستلزم به حذف رساندن تلفات آب از

* مسئول مکاتبات، پست الکترونیکی: hassan@shirazu.ac.ir

1. به ترتیب دانشجوی سابق کارشناسی ارشد و استاد پرداخت مدیریت مناطق بیابان، دانشکده کشاورزی، دانشگاه شیراز

69
طرح چرخهای سطحی، نفوذ عمیقی تیمگر از زمین لخت، گاهی و دیگر رویکرد می‌دانند که می‌تواند به دلیل تعداد سطحی موارد تغییرتکامل به دست آید.

بیشترین میزان تجربه کیهانی در روش فشارهای سطحی، در لایه سطحی خاک‌یا عمق 15 سانتی‌متر (و در روش فشارهای زیرسطحی در عمق 30–40 سانتی‌متر در خاک گزارش شده) به همراه همکارانش (24) اعلام کرده و این عمل روش‌های گیاهی در مدل برای رشد ریشه به‌دست آمد و کاهش مؤثر ریشه‌گذاری در هنگام کاهش مقدار آب. و تاردیویی (24) یک مدل عمومی تحقیقات برای سیستم ریشه در گزارش کردند که علت این تغییرات فاکتور در پاتامهای مؤثر بر رشد ریشه، پیشگیری نبوده توده‌سازی است. روش به سیستم و همکاران (19) در بررسی وضعیت رشد گیاه در در شرایط بالا به بودن سطحی آب رژیم‌پذیر (بین 13/34 و 2/44 متراً) در نهایت روش‌های گیاهی در در شرایط آزمایش، 91 سانتی‌متر و در خاک شنی، به 14 سانتی‌متر گزارش کرده‌اند. جلوگیری از ارتباط گیاه با آب از طریق رشته صورت می‌گیرد. مقادیر آب و مواد غذایی در دسترس گیاه، از روی حجم خاکی که به روش‌های است با در نمایندگی روش‌های شرکت با ماشینی و حجم بیشتری نیز بررسی‌گر به استار شریه در جهات افزایش و تبخیر دارد. (5) تغییر روش‌های جیاه، علاوه بر اینکه یک خصوصیت زیبایی است به شرایط محیط رشد گیاه همچون رطوبت، برف، خاک و عنصر غذایی بررسی گردیده (5) از لحاظ نسبتیگان گیاه درخت، نسبت به رشد و از نظر وزنی (پایین‌تر از عمق 45 سانتی‌متر) (1) رشد عمیقی تا 2/44. جابجایی سانتی‌متر در مدل آزمایشی که به هفته مقایسه روش‌های آبیاری فشارهای مختلف و غرفه‌ای بر اساس عمقها در روش تحقیق بیشتری می‌پذیرد در اعمال پایین تراکم آنها کاهش می‌یابد. مدل (19) با مطالعه چگونگی توزیع ریشه گیاه جی در شرایط مختلف علتی است که تراکم ریشه‌ها با آب‌وبرای عمل خاک به صورت گزارش گیرشی کاهش عمیقی شده‌باشد و نیز در بررسی نماینده مرحله و همکاران (17) تجربه کلیه روش‌ها در در نهایت مایعیت خاک را در روش فشارهای آبیاری فشارهای سطحی و زیرسطحی نا عمق
جدول 1. بافت کیفیت آب آبیاری میلی‌آب و درون‌یاد

<table>
<thead>
<tr>
<th>میلی‌آب و درون‌یاد</th>
<th>کیفیت آب آبیاری</th>
<th>pH</th>
<th>SAR</th>
<th>EC (dSm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پساب نافاضل</td>
<td>1/4</td>
<td>7/6</td>
<td>3/2</td>
<td>0/0</td>
</tr>
<tr>
<td>آب معمولی</td>
<td>1/5</td>
<td>7/8</td>
<td>3/4</td>
<td>0/8</td>
</tr>
</tbody>
</table>

c: تخلیه ریشه، SAR نسبت جدید مذید

جدول 2. عمق خاصیت‌های شیمیایی و فیزیکی خاک مزرعه قبل از شروع آزمایش

<table>
<thead>
<tr>
<th>عمق خاک (سانتی‌متر)</th>
<th>درصد شن</th>
<th>درصد رس</th>
<th>درصد سیلت</th>
<th>شیمیایی</th>
<th>BD (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20</td>
<td>40</td>
<td>27</td>
<td>33</td>
<td>1.32</td>
<td>0.25</td>
</tr>
<tr>
<td>20-40</td>
<td>45</td>
<td>24</td>
<td>31</td>
<td>1.36</td>
<td>0.28</td>
</tr>
<tr>
<td>40-60</td>
<td>47</td>
<td>27</td>
<td>26</td>
<td>1.39</td>
<td>0.30</td>
</tr>
<tr>
<td>60-80</td>
<td>50</td>
<td>27</td>
<td>23</td>
<td>1.43</td>
<td>0.33</td>
</tr>
</tbody>
</table>

هر آبیاری کشتی شود، نهایی بررسی چگونگی توسعه و توزیع ریشه گیاه در خاک ره‌هایی جزءی، قطره‌های سطحی و قطره‌های زیرسطحی با پساب فاضل و آب معمولی و ثالثاً تدوین شیمیایی توسعه عمق رشد گیاه در منطقه مورد مطالعه می‌باشد.

مواد و روش‌ها

این تحقیق در یکی از ماشین‌های نهایی خاک فاضل شهربخشان(این‌دی‌جی کریال) در سال‌های 1384 و 1385 در قالب طرح کرده بی‌کاری شده (انسپیر بلات)، یا فاکتور اصلی روش آب‌های (جهتی، قطره‌های سطحی و قطره‌های زیرسطحی) و فاکتور فریغی کیفیت آب آبیاری (آب معمولی و پساب فاضل) و در چهار طبقه (52 گردو 67 مرطوب از عناصر 32 گردو 52 متر) اجرا گردید. و چهار نوع کرک (نحوه جمعاً 24 کرک به ابعاد 57 متر) اجرا گردید.

جدول 1 کیفیت آب آبیاری و جدول 2 و پژوهش‌های فیزیکی و شیمیایی خاک مزرعه را نشان می‌دهد. به‌دنبال نوسانات آب گیرایی، دانلرز مزرعه آزمایشی، یک هزکنسپ سطحی به عمق دو متر و یا مقیاس دویلچه حفر گردیدند. یک می‌باشد یویس آب گیرایی، سطح آب زیرزمینی در طول دو ماه گیاه، پایین‌تر از

جهت توسعه ریشه گیاه در حین محاسبه دیکتر مقدار خاصیت آب آبیاری در طول درون دش به‌کار گرفته که از تعلقات احتمالی فضوف

\[d_{w} = (\theta_{w} - \theta_{0}) \times R \]

\[\theta_{w} \text{ عمق خاک (سانتی‌متر)، } \theta_{0} \text{ رطوبت خاک در } BD, \theta_{r} \text{ رطوبت خاک در زمان آبیاری و } R \text{ عمق رشد } \]

چگالی ظاهری (نسموی) خاک (بی‌ون) عمق رشد در زمان آبیاری (میلی‌متر). در عمل معمولاً به‌دنبال یافتن اطلاعات کافی از عمق رشد خاک از همه مزارع مختلف، به‌خصوص عمق نهایی، عمق خاصیت آب آبیاری به‌همین عمق نهایی ریشه، محاسبه می‌شود. این در حالی است که عمق رشد به طول دوره رشد گیاه با عمق نهایی ریشه تفاوت دارد.

برای جلوگیری از تلفات عمق آب اطلاعات میدانی و آگاهی از چگونگی توسعه عمق رشد در هر نقطه، نوع خاک و مایعیت مزرعه که بخشی از آن توجه به رهوی آبیاری و کیفیت آب می‌باشد از اهمیت بالایی برخوردار است.

حداف از این تحقیق، اولاً بررسی چگونگی توسعه عمق رشد گیاه در حین محاسبه دیکتر مقدار خاصیت آب آبیاری در طول درون دش به‌کار گرفته که از تعلقات احتمالی فضوف

??
برای هر تیمار در سه نکرار و از هر نکرار، سه گیاه (جمعاً 54 گیاه) اندازه‌گیری شد. در هر نتیجه ریشه‌ها گیاه حاشیه ترانشه با بلخاپایی از خاک جدا و عمق آنها با خطکش اندازه‌گیری می‌شود. عمق‌های متوسط ریشه در هر تیمار به عناوین میکروپرای محاسبه مقدار آب ایلاری خالص در هر نتیجه در محصولات ریشه، برای رساغن رطوبت به طرفی زراعی استفاده شد. در شکل 1 (عکس‌های الف و ب) نمایی از چگونگی اندازه‌گیری عمق ریشه گیاه در نشان داده شده است.

برای اندازه‌گیری وزن ریشه در چهار مختلف خاک از روش مولفه‌ی خاک استفاده شد (5). در این روش ساتون‌هایی (مولفه‌ی) از خاک به همراه ریشه گیاه برداشت شدند (9). برای مطالعه دقیق تر با یک مولفه‌ی خاکی استفاده شد (5) که در این تحقیق با تکمیل‌دنی ستوخ خاک در چهار موردی عرضی، طول و عمقی از این شیوه استفاده شد. افزون بر آن در پایان

شکل 1. چگونگی اندازه‌گیری عمق توسعه ریشه گیاه درخت (الف و ب) و جداسازی ریشه‌ها از خاک (ج و د)
جدول 3. نتایج تجزیه واریانس عمق ریشه گیاه درخت (سانتی متر) در طول دو دوره آزمایش

میانگین عمق	دو دوره آزمایش	میانگین	دو دوره آزمایش	سال انجم	میانگین	دو دوره آزمایش	گروه تغییر	کیفیت آب	روش آبیاری	نتایج آزمایش	کلکار	نتایج آزمایش	
زرد	نارنجی												
0/16	0/21	0/18	0/34	0/16	0/18	0/16	0/34	0/16	0/18	0/34	0/16	0/18	0/34
0/16	0/37	0/18	0/37	0/16	0/37	0/16	0/37	0/16	0/37	0/37	0/16	0/37	0/37
0/16	0/46	0/18	0/46	0/16	0/46	0/16	0/46	0/16	0/46	0/46	0/16	0/46	0/46
0/16	0/48	0/18	0/48	0/16	0/48	0/16	0/48	0/16	0/48	0/48	0/16	0/48	0/48
0/16	0/53	0/18	0/53	0/16	0/53	0/16	0/53	0/16	0/53	0/53	0/16	0/53	0/53
0/16	0/56	0/18	0/56	0/16	0/56	0/16	0-56	0/16	0/56	0/56	0/16	0/56	0/56
0/16	0/59	0/18	0-59	0/16	0/59	0/16	0/59	0/16	0/59	0/59	0/16	0/59	0/59
0/16	0/67	0/18	0/67	0/16	0/67	0/16	0/67	0/16	0/67	0/67	0/16	0/67	0/67
0/16	0/70	0/18	0/70	0/16	0/70	0/16	0/70	0/16	0/70	0/70	0/16	0/70	0/70
0/16	0/75	0/18	0/75	0/16	0/75	0/16	0/75	0/16	0/75	0/75	0/16	0/75	0/75
0/16	0/78	0/18	0/78	0/16	0/78	0/16	0/78	0/16	0/78	0/78	0/16	0/78	0/78

نتایج و بحث

عمل ریشه

نتایج تجزیه واریانس در طول دو دوره آزمایش نشان می‌دهد که در هر یک از دو سال آزمایش، عمق نهایی ریشه‌های تحت تأثیر روش‌های آبیاری و کیفیت آب آبیاری قرار گرفته است. جدول 2 نشان می‌دهد که در هر دو سال آزمایش عمق نهایی ریشه در آبیاری جویچه‌ای کمترین و در آبیاری قطره‌ای زیر گرفته شده‌اند. به دلیل این تفاوت در سطح پنج درصد معنی‌دار نشده است.

فصل رشد نیز از هر تیمار سه تکرار و از هر تکرار سه گیاه انتخاب شدند. (جمع‌اکل 53 گیاه از 18 گیاه) و ترکیب‌های به‌طور عرض و عمق تقریبی یک گیاه در هر کرت حفر شدند. (9) سپس برای هر گیاه از درون‌هایه تهته و خارج شدند. هر مولکولی به ابعاد 2 متر و 180 سانتی‌متر، در جهت عمق ریشه‌های قرار مولکولی هر کدام با عمق 20 سانتی‌متر، در جهت عمق بر ریشه‌های قرار مولکولی هر کدام با طول 25 سانتی‌متر (فاضله ریشه‌های کاست از هم 75 سانتی‌متر) و در جهت ریشه‌های کاست مولکولی با عرض 18 سانتی‌متر (فاضله دو گیاه با طول ریشه 18 سانتی‌متر) جمعاً 12 مولکولی خواه و ریشه برای هر گیاه برداشت شد. مولکول‌های خاک به‌طور دفعات در تشکیل پلاستیکی خیسک‌سازی شدند. (9) در هنگام شستشوی ریشه‌ها سه‌تایی بر از خاک جدا شوند کم‌شستشوی ریشه‌ها برای کم‌شستشوی آب و به‌منظور صافی‌سازی ناسازی‌های پلاستیکی 50 مسی (تعداد ریشه‌های در هر بیشتر مربع) انجام شد.
جدول 2. مقایسه میانگین عمق ریشه (سانتی‌متر) در مراحل رشد. تحت تأثیر روش آبیاری (دانکن 5)

<table>
<thead>
<tr>
<th>روش آبیاری</th>
<th>سال اتمام آزمایش</th>
<th>روز بعد از کاشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷۹/۵(آ)</td>
<td>۷۷/۵(آ)</td>
<td>۷۳/۵(آ)</td>
</tr>
<tr>
<td>۷۹/۲(آ)</td>
<td>۷۷/۲(آ)</td>
<td>۷۳/۲(آ)</td>
</tr>
<tr>
<td>۷۹/۱(آ)</td>
<td>۷۷/۱(آ)</td>
<td>۷۳/۱(آ)</td>
</tr>
<tr>
<td>۷۹/۴(آ)</td>
<td>۷۷/۴(آ)</td>
<td>۷۳/۴(آ)</td>
</tr>
</tbody>
</table>

کیفیت آب آبیاری نیز هنگام تأثیر بر عمق نهایی ریشه نشان داد. این نتایج بنابر انتظار که عمق نهایی ریشه گیاه در تری تطبیق در حد نیاز در اختیار گیاه قرار می‌گیرد، تحت تأثیر روش و کیفیت آب آبیاری قرار ندارد. بلکه بر اساس بسیاری از تحقیقات تحت تأثیر خصوصیات خاک (تایلی، ساختار و مقاومت) و وضعیت تغذیه و تهوره و همچنین عمق آب زیرزمینی قرار می‌گیرد (۲۶ و ۲۷). نتایج انداده‌گیری‌ها در هر نوبت نشان داد، بیشترین عمق ریشه مربوط به روش آبیاری قطره‌ای زیرسطحی و کمترین آن مربوط به روش آبیاری جوی‌خوری به‌روش نیا. نتایج در جدول ۳ شاهده می‌شود در سال اول آزمایش، روش آبیاری در دویم و سومین نمونه‌گیری ورود روز بعد از کاشت (۲۸ و ۲۹) تحت تأثیر عمق ریشه داشت. این نتایج در هنگام تأثیر بر عمق نهایی ریشه نشان داد. در دویم سال آزمایش نیز تأثیر روش آبیاری در نمونه‌گیری‌های نوبت دوم و چهارم (۲۶ و ۲۷) نمایان شد. این نتایج نشان داد، کیفیت آب آبیاری نیز در نمونه‌گیری (۷۷/۴) روز بعد از کاشت (۲۸ و ۲۹) تحت تأثیر عمق نهایی ریشه نشان داد. ضمن اینکه اثر مقیاس کیفیت آب بر روش آبیاری نیز در نمونه‌گیری چهارم (۷۷/۴) روز بعد از کاشت (۲۸ و ۲۹) تحت تأثیر عمق نهایی ریشه نشان داد.
جدول ۵: مقایسه میانگین عمق ریشه (سانتی‌متر) در مراحل رشد. تحت تأثیر کیفیت آب (دانکن ۵/۱) در طول دوره آزمایش

<table>
<thead>
<tr>
<th>سال انجام آزمایش</th>
<th>کیفیت آب</th>
<th>روز بعد از کاشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲ روز</td>
<td>۷۵/۷(ب)</td>
<td>۱۲۸۴</td>
</tr>
<tr>
<td>۱۴ روز</td>
<td>۷۵/۷(ب)</td>
<td>۱۲۸۵</td>
</tr>
<tr>
<td>۱۸ روز</td>
<td>۷۵/۷(ب)</td>
<td>۱۲۸۴</td>
</tr>
<tr>
<td>۲۱ روز</td>
<td>۷۵/۷(ب)</td>
<td>۱۲۸۴</td>
</tr>
<tr>
<td>۲۴ روز</td>
<td>۷۵/۷(ب)</td>
<td>۱۲۸۴</td>
</tr>
<tr>
<td>۲۷ روز</td>
<td>۷۵/۷(ب)</td>
<td>۱۲۸۴</td>
</tr>
<tr>
<td>۳۰ روز</td>
<td>۷۵/۷(ب)</td>
<td>۱۲۸۴</td>
</tr>
</tbody>
</table>

نمودار ۱. منحنی توسعه عمق ریشه گیاه در طول دوره رشد بر اساس داده‌های سال اول آزمایش

بررسی توسعه ریشه درخت و تأثیر آن بر کاهش مصرف آب در روش‌های...

مقدار بر عمق واقع ریشه (سانتی‌متر) بررسی قرار گرفته. مدل خطی CROPWAT به شرح زیر می‌باشد:

\[R_d = R_{m\text{min}} + (R_{d\text{max}} - R_{m\text{min}}) \frac{Y}{X} \]

که در آن \(R_d \): عمق ریشه در روز اندام‌گیری (سانتی‌متر)، \(R_{m\text{min}} \): حداقل عمق ریشه، \(R_{d\text{max}} \): عمق نهایی ریشه و \(Y \): ضریب رشد عمق ریشه است. در این مدل، حداقل عمق ریشه برای گیاهان مختلف بین ۱۰ تا ۵۰ سانتی‌متر و دامنه تغییرات عمق نهایی ریشه گیاه درخت نیز بین ۱ تا ۲ متر گزارش شده است (۲۰). ضریب تعداد رشد و خصوصیات رشد رشد و عرض رشد در طول دوره رشد که با کمک مدل خطی با رابطه زیر محاسبه می‌شود:

\[R_d = \frac{D_{ag}}{D_{in}} \]

\[D_{ag} : فاصله زمان جوان‌نشینی تا روز اندام‌گیری(روز) و \]
\[D_{in} : زمان کامل رشد زیرین به عمق نهایی ریشه(روز) \]

و گره‌زی به شرح زیر است:

\[y = -0.0098x^2 + 1.713x + 3.0301 \]

\[R_2 = 0.9955 \]
نمودار ۲: مقایسه مقادیر واقعی عمق ریشه گیاه ذرت با مقدار محسوب شده توسط مدل برگ و گریمز

نمودار ۳: مقایسه مقادیر واقعی عمق ریشه گیاه ذرت با مقدار محسوب شده توسط مدل خاک

مدل برگ و گریمز و مدل حاصل از این تحقیق تخمین می‌زند و از حدود ۵۰ روز پس از کاشت ناپایان دوره رشد، عمق ریشه را به‌طور ثابت ۱۰۰ سانتی‌متر پراورد می‌کند. این در حالی است که مدل برگ و گریمز نیز پراورد دیقیقی از عمق ریشه گیاه ذرت در منطقه مورد مطالعه ندارد، به‌使え گونه‌ای که تا حدود ۵۰ روز پس از کاشت عمق ریشه را کنترل از مقدار واقعی پراورد می‌کند و پس از آن تا انتهای دوره رشد عمق ریشه را به‌طور ثابت ۱۰۰ سانتی‌متر پراورد می‌کند.

رضایت قرار گرفتن نتایج حاصل از دو مدل بالا نسبت به مقادیر واقعی و حاصل از تحقیق گردیده است. روند توسیع عمق ریشه توسط مدل‌های خاکی، برعکس مقایسه با نتایج حاصل از CROPWAT و در نمودار ۵ با نتایج حاصل از معادله نهایی حاصل از تحقیق حاضر (معادله ۵) مقایسه گردید.

\[
R_d = R_{\text{max}} \left[\frac{1}{2} \ln \left(\frac{D_{\text{eq}}}{D_{\text{in}}} \right) \right]^{1/4}
\]

جوانته مشاهده می‌شود مدل CROPWAT حداکثر عمق ریشه را ۳۰ سانتی‌متر، در حالی که مدل حاصل به‌طور کلی پرتره را ۱۵ سانتی‌متر را برای پایان‌رسیدن در نظر می‌گیرد. هر چند مدل عمق ریشه گیاه ذرت برای دشت کرمال را به‌طور قابل توجهی بیشتر از...
بررسی توسعه ریشه ذرت و تاثیر آن بر کاهش مصرف آب در روش‌های...
جدول 2: مقایسه مدل‌های بورگ و گریمز، خطي، CROPWAT و مدل این تحقیق در تخمین عمق ریشه (سانتی‌متر) و بر اساس آن حجم آب اپایری (متر مکعب بر هکتار)

<table>
<thead>
<tr>
<th>مدل بورگ و گریمز</th>
<th>مدل خطي</th>
<th>مدل CROPWAT</th>
<th>مقدار محاسبه شده مدل این تحقیق</th>
<th>موجود در کاوش (روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل بورگ و گریمز</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مدل خطي</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مدل CROPWAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

عمق ریشه (cm)

<table>
<thead>
<tr>
<th>عمق ریشه</th>
<th>مدل بورگ و گریمز</th>
<th>مدل خطي</th>
<th>مدل CROPWAT</th>
<th>مقدار محاسبه شده مدل این تحقیق</th>
<th>موجود در کاوش (روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>30</td>
<td>10</td>
<td>0/25</td>
<td>3/03</td>
<td>0</td>
</tr>
<tr>
<td>35/32</td>
<td>18/17</td>
<td>0/5</td>
<td>5/07</td>
<td>14/24</td>
<td>10/8</td>
</tr>
<tr>
<td>31/11</td>
<td>33/5</td>
<td>24/17</td>
<td>3/09</td>
<td>24/38</td>
<td>35/7</td>
</tr>
<tr>
<td>30/9</td>
<td>18/21</td>
<td>33/2</td>
<td>3/74</td>
<td>24/31</td>
<td>28</td>
</tr>
<tr>
<td>53/32</td>
<td>42/67</td>
<td>27/6</td>
<td>24/74</td>
<td>24/31</td>
<td>28</td>
</tr>
<tr>
<td>50/16</td>
<td>40/31</td>
<td>51/82</td>
<td>11/8</td>
<td>24/31</td>
<td>28</td>
</tr>
<tr>
<td>75/85</td>
<td>64/59</td>
<td>66/94</td>
<td>10/3</td>
<td>56/99</td>
<td>42</td>
</tr>
<tr>
<td>79/75</td>
<td>87/17</td>
<td>73/35</td>
<td>9/52</td>
<td>33/44</td>
<td>49</td>
</tr>
<tr>
<td>55/45</td>
<td>95/33</td>
<td>69/1</td>
<td>9/88</td>
<td>59/52</td>
<td>45</td>
</tr>
<tr>
<td>80</td>
<td>100</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>63</td>
</tr>
</tbody>
</table>

افزایش تخمین عمق ریشه نسبت به مقدار واقعی (%)

برآورد حجم آب بر اساس عمق ریشه (m³/ha)

افزایش مقدار آب تخمین نسبت به مقدار واقعی (%)

ملاحظه: مقدار‌های موجود در کاوش به وسیله تگرس تخمین عمق ریشه نسبت به مقدار واقعی (%)

مقدار واقعی (m³/ha)

افزایش مقدار آب تخمین نسبت به مقدار واقعی (%)

مقدار واقعی (m³/ha)
نمودار ۷ مقایسه روند رشد طولی ریشه درخت در آبیاری با پساب فاضلاب و آب معمولی

نمودار ۶ مقایسه روند رشد طولی ریشه درخت در آبیاری جویچه‌ای، قطره‌های سطحی و قطره‌های زیرسطحی

عمق لایه خاک (cm) (%)

۰-۲۰
۲۰-۴۰
۴۰-۶۰
۶۰-۸۰

(الف)

عمق لایه خاک (cm) (%)

۰-۲۰
۲۰-۴۰
۴۰-۶۰
۶۰-۸۰

(ب)

عمق لایه خاک (cm) (%)

۰-۲۰
۲۰-۴۰
۴۰-۶۰
۶۰-۸۰

(ج)

نمودار ۸ تراکم وزن خشک ریشه درخت در نیم‌خاک در (الف): آبیاری جویچه‌ای، (ب): قطره‌های سطحی و (ج): قطره‌های زیرسطحی
نمودار 9. تراکم و زن خشک ریشه در سطوح‌های جانی‌که طرفین محل استقرار گیاه و منبع آب در
(الف): آب‌یاری جوی‌چه‌ای. (ب): طرفین سطحی و (ج): طرفین زیر‌سطحی

ام‌الا در آب‌یاری فضه‌های سطحی و زیر‌سطحی (۹-ب و ج)، بیشترین تجمع ریشه در سطح میانی فضه خاک نسبت به منبع آب و استقرار گیاه توزیع شده‌اند.

نتیجه‌گیری
نتایج دو سال آزمایش نشان داد که در تمامی نمونه‌گیری‌ها بیشترین عملیاتی در روش‌های زیرباتلاقی و سطحی و کمترین نتایج در روش‌های جوی‌چه‌ای مشاهده شد و آب‌یاری با پساب فاضلاب نیز عملیاتی بیشتری را در مقایسه با آب معمولی افزایش داده است. اما تأثیر روش‌های آب‌یاری و کیفیت آب بر عملیاتی ریشه معمولاً با توجه به آزمایش گیری در طول فصل رشد نشان داد عملیاتی ریشه در شرایط آزمایش برای تیمارهای مختلف (در حدود ۹۰ روزگی) به
حداکثر خود (به‌طور متوسط ۷۷ سانتی‌متر) رسید. بیشترین تجمع و زن خشک ریشه گیاه در این روش‌های زیرباتلاقی در عملیات ۲۰۰۰ سانتی‌متری خاک و در طرفین سطحی و جوی‌چه‌ای در سطحی و جوی‌چه‌ای در زیرباتلاقی در عملیات ۴۰۰۰ سانتی‌متری خاک و در طرفین سطحی و (۴۰۰۰ سانتی‌متری) متمرکز بود. بیشترین یک‌نواختی توزیع ریشه در لاشه‌های خاک

عمق ۲۰۰۰ سانتی‌متری خاک اندازه‌گیری شد (۱۸/۵ درصد). زیرا فضه‌های چکان در عمق ۱۵ تا ۲۰ سانتی‌متری خاک نسبت به شده بودند. اما در آب‌یاری فضه‌های سطحی و جوی‌چه‌ای بیشترین تجمع ریشه در لاشه سطحی خاک (۴۰۰۰ سانتی‌متری) اندازه‌گیری شد (بیش از ۴۰ درصد). بنابراین این نمونه درسی و زن خشک ریشه در آب‌یاری فضه‌های زیرباتلاقی بطور یک‌نواختی در لاشه‌های سطحی و چکان مورد مطالعه (۳۰۰۰-۵۰۰۰ سانتی‌متر) توزیع شده است. در حالی که در آب‌یاری فضه‌های سطحی و جوی‌چه‌ای بیش از ۴۰ درصد وزن خشک ریشه در لاشه سطحی خاک (۲۰۰۰ سانتی‌متری) متمرکز شده است.

اندازه‌گیری‌ها نشان داد که ریشه در همه تیمارها در اعماق گل‌پایی نمودار که در ۵۰ سانتی‌متر با دردستواردهای بار ابورسف و سگو (۱۱) و همانندی و همکاران (۱۷) همکاری دارند. توزیع وزن‌ریشه نسبت به محل استقرار گیاه (در طرفین آن) و محل خروج آب (طرفین سطحی و زیرباتلاقی) در نمونه‌های نشان داده شده است. این نمونه در نشان می‌دهد در آب‌یاری جوی‌چه‌ای (۹-الف)، ریشه‌ها به صورت نسبتاً یک‌نواختی در این طرفین خاک طرفین گیاه توزیع شده‌اند.
در روش طفره‌ای زیرسطحی مشاهده شد. از انتخاب که آب در
این‌طور گروه‌های بطور گسترده و یکنواختی در سطح
جهش خلق می‌شود، یکنواختی توزیع ریشه در سنون‌های
جانی که بیشتر از روش‌های قطعه‌ای که آب بصورت
وضعی می‌باشد مشاهده شد. مقایسه عمل ریشه دتر
اندازه‌گیری شده با تابج تخمینی حاصل از مدل‌های خشی
بورک و گریمی، و مدل حاصل از این تحقیق CROPWAT,
و مدل حاصل از این تحقیق نشان داد با توجه به این، که رشد عملیاتی ریشه کیفیت متأثر از
وضعیت خاک، وضعیت تغذیه و اقلیم و عمق آب زیرزمینی هر
منطقه متغیر است، نمی‌توان از مدل‌های کلی که در شرایط
منطقه دیگر تدوین شده‌اند، برای سایر مناطق با دقت تابع بود.
استفاده کرد. بنابراین توصیه می‌شود برای هر منطقه با توجه به نوع
خاک، تغذیه، مرطوبیت و اقلیم آن، مدل تجربی یا ابزارهای
تدوین گردید تا اکنون تایم آب در محدوده ریشه بدون نگران

منابع مورد استفاده

1. انسانی، م. و. ه. خالی. 1383. شناخت و ارتقای بهره‌وری آب کشاورزی به منظور تأمین انبیت آب و غذایی کشور. مجموعه
مطالات پژوهشی همایش کمیته ملی آب و زکا کشور ایران، 4-2 دیه 1383، صفحات 658-674.

2. انسانی، م. و. ه. خالی. 1382. بهره‌وری آب کشاورزی کمیته ملی آب و زکا کشور ایران، گزارش کار سیستم‌های آبیاری در
بندرعباسی، م. 1382. مزرعه 199 صفحه.

3. حاجی‌آبادی، م. 1378. کوشش خاک و ریشه گیاه. انتشارات، اصفهان.

4. غایبی، م. و. ج. و. مه. 1372. استفاده از قابل اندازه‌گیری توسط کمیته ملی آب و زکا کشور ایران، تهران.

5. علی‌زاده، ا. 1373. رابطه آب و خاک و خاک و گیاه. انتشارات اسلامی قردار و رضوی، مشهد.

6. کشاورزی، دک. و. ج. 1376. نوشتار مصرف آب در بخش کشاورزی. پژوهش‌های تخصصی برای آینده. پژوهش‌های خشک‌سال.

7. وضعیت موجود، چشم‌اندازه‌ای آینده و راهکارهای جهت بهبود سازی مصرف آب. سازمان تحقیقات، آموزش و تربیت
کشاورزی، کرج.

8. علی‌رود، م. 1376. گزارش‌های بر سامان آب، شکف‌کنی و چالش انتشارات چانکه‌ای اصفهان.

