تأثیر میزان نیتروژن و زمان برش علوفه بر عملکرد علوفه و دانه جو کارون

چکیده

به منظور بررسی اثر نیتروژن و زمان برش علوفه بر عملکرد دانه و علوفه چو (Hordeum vulgare L. رقم کارون)، آزمایش با صورت کرته‌ای خرد شده در چارچوب بلوک‌های کامل نزدیک، در مزرعه پژوهشی مجمع عالی آموزشی و پژوهشی کشاورزی رامین کهی زیره به دانشگاه شهید چمران اهواز، در سال زراعی ۱۳۷۶ اجرایدگرد. تیمارهای آزمایش شامل پنج سطح نیتروژن ۷۰، ۴۰، ۲۰ و ۰ کیلوگرم در هکتار به صورت کد اوره در کرته‌های اصلی، و سه زمان برش علوفه شامل عدم برش علوفه، برش علوفه در ابتدا ساقه رنگ به قطع می‌شود و پس از برش علوفه در زمانی ساقه اصلی در کرته‌های افرعی بود. اختلاف معنی‌داری در عملکرد دانه برای میزان‌های مختلف نیتروژن و زمان برش علوفه دیده نشد. در بررسی اثر مقایل نیتروژن و زمان برش علوفه، بین شرایط عملکرد دانه به میزان ۶/۲۸۲ کیلوگرم در هکتار در زمان برش علوفه ابتدا ساقه، و کمترین عملکرد با میانگین ۵/۷۲۸ کیلوگرم در هکتار در زمان برش علوفه اواسط ساقه رنگ داشت. تأثیر متفاوت سطوح نیتروژن و برش علوفه و اثر ترکیب علوفه به نظر می‌رسید که علوفه دانه بهبود می‌یافت، و با توجه به سطوح نیتروژن، زمان برش علوفه و ترکیب علوفه که تأثیر گذشته را داشت و با توجه به انجام افتخاری گوره، و برش علوفه در مرحله ابتدا ساقه رنگ، نسبت به تیمارهای دیگری از پرتوی مناسبی در کشت دو منظوره (علوفه + دانه) برخوردار بود.

واژه‌های کلیدی: نیتروژن، زمان برش، عملکرد علوفه و دانه، جو

مقدمه

تأمین مواد غذایی مورد نیاز در کشور از اهداف مهم کشاورزی‌اند. نیتروژن باعث کاهش کشاورزی است. در این میان، تأمین پروتئین جهانی از

۱. به ترتیب استادان دانشگاه ارزش و دانش‌پژوهی زراعت، دانشگاه کشاورزی رامین، دانشگاه شهید چمران اهواز

۲. استاد زراعت، واحد علوم و تحقیقات دانشگاه آزاد اسلامی، تهران

۹۷
میکند (2). مراکز شور در حدود 90 میلیون هکتار برآورد شده که تقییا حدود 10 میلیون تن غلظه در سال تولید می‌کنند. این مقدار علوفه تنا می‌تواند غذای 16 میلیون واحد دام را تأمین نماید، در حالی که 64 میلیون واحد دام به علوفه این مراکز تأمین می‌شود (11). مجموع متوسط غذای دامی، از جمله گیاهان علوفه‌ای، نیاز قهر به تأمین نیازهای غذایی دام موجود نیست.

ولی تأمین بخشی از نیاز غذایی دام‌ها از طریق چرای زراعت پاییزه غلات مورد توجه است (9). تأمین خرده‌کار دام از این طریق، با توجه به زمان استفاده آن، در جریان کم‌بود پروتئین مورد نیاز و همچنین حفظ مراکز شور تشکیل می‌شود (3).

استان خوزستان نیز از این امر مستثنی نیست، و با توجه به این که هر ساله 16 میلیون واحد دام ثابت و مستقر در طول زمستان در این استان حضور دارد و در فصل زمستان با کمبود شدید غلات بر روی هستند، کشت غلات، به ویژه چرب می‌تواند یکی از راه‌های اساسی تأمین غلات مورد نیاز دام‌ها در فصل نیز (10) به توجه به ارزش فذایی دانه غلات، مدیریت در زمان مناسب برای برداشت علوفه سبز غلات به ویژه جوی، یکی از عوامل اصلی کنترل علوفکرد دانه در کشت به منظور و تأمین این اجراها، بهبود حالت و زمین با اعمال مدیریت تمیز که پژوهشگری سیستمی بررسی کرده، و اینکه که نیازهای غلات کشاورزی گروهی که کشاورزان، افزایش کیفیت و بهبود کیفیت گیاهان، به تأخیر می‌رساند، می‌تواند دانه مورد نیاز (12). این تأثیر، در برداشت در هنگام غلظه، که در بیشتر اوقات با فصل میسیس زایش همراه است، حاصل از این مدیریت می‌باشد.

بررسی اثرات گیاه بیشتر و برداشت غلات بر عملکرد دانه و دیگر اجزای عملکرد غلات بیانگر این است که میزان عملکرد دانه پس از برداشت غلات و یا چرایدند، در حد مستورد‌های منفی بوده است. بیشتر پژوهش‌ها نشان می‌دهد که کم‌بود نتایج گوناگونی ناشی از شرایط آب و هوایی مختلف، رقم عملیات زراعی و مدیریت برداشت غلات می‌باشد (15، 17، 24، 25، 27 و 2).
تأثیر میزان تیتر و نرخ برش علوفه بر عملکرد
مجتمع سالی آموزشی و پژوهشی کشاورزی رامیان واقع در شهر
ملاطیه، در 36 کیلومتری شمال شرقی شهرستان اهواز، با
میانگین Yaşتی 155 میلی در سال انجام شد. بقای خاک,
لوم سیستم رسی 2/3 بوده، و بر پایه طبقه‌بندی
می‌باشد. نیتروژن کل خاک 195 پیپم و درجه شوری آن 97/3
سی گیم بر متر مربع این، زمین مورد نظر در فصل بهار و تابستان به
صربت آبی بود.
این آزمایش به روش کرت‌های خرد شده در چارچوب طرح
پلکاری کامل تصادفی در چهار تکرار اجرا گردید. نیتروژن با
پنج سطح (25، 50، 75، 100 کیلوگرم در هکتار) در
کرت‌های اصلی، و زمین برش علوفه در سه سطح، عدم برش،
علوفه سیبی، بر حالت علوفه سیب ایجادی مرحله رفتگی بدون
حفض میزان رایی ساقه اصلی، و برداشت علوفه سیب در
اوست ساقه رفتگی با حفظ میزان رایی ساقه اصلی، در
کرت‌های فرعی قرار گرفت. هر تیمار شامل 9 رشته به شمار
پنج مت و قوسیل 20 سانتی متر بود. مقدار کود فسفره بر میانی
60 کیلوگرم و P۲O۲ به صورت فسفات آمونیوم، و کود نیتروژن
از منبع اوره تأمین گردید (50 کود نیتروژن با احتمال مقدار
نیتروژن از منبع فسفات آمونیوم هم‌زمان با کاسته به صورت
خطی در کنار خطوط کشت، و 50 پاییز ونیمه به صورت
سرکس پس از برداشت علوفه توزیع شد.
عملیات کاشت در تاریخ 29/1/87 با استفاده از رم کارون، و
با مقدار بذر با یک وزن هزار دانه و تراکم 3000 دانه در مریخ
انجام شد. در طول فصل رشد، مزرعه از نظر آفات، ییلیارها و
علوفه‌های هرز تحت مراقبت دایم بود، و موادی که نیاز به
کاربرد باشد مشاهده نگردید.
تیمار برش علوفه سیب در ابتدا مرحله ساقه رفتگی، 30 روز
پس از کاشت اعمال شد و با برش با مرحله شش میقاس فیکس،
پیادها تخته کرد. همراه با کاشت برش علوفه سیبی در چهار
خط وسط، پس از حذف دو خط کناری و بالا و پایین کرت‌ها،
در سطحی برابر 1/2 متربان از 15 سانتی متر سطح زمین
جدول ۱. میانگین اثر میزان نیتروژن و زمان برش علوفه بر عملکرد بیولوژیک دانه و کاه، وزن ماده خشک، عملکرد پروری و درصد پروری خشک

| نیتروژن | عملکرد دانه بیولوژیک | عملکرد کاه و کاه علوفه عملکرد پروری و درصد پروری خشک
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(گرم در هکتار)</td>
<td>(گرم در هکتار)</td>
<td>(گرم در هکتار)</td>
</tr>
<tr>
<td>کیلوگرم</td>
<td>(گرم در هکتار)</td>
<td>(گرم در هکتار)</td>
</tr>
<tr>
<td>۱۰/۲۵</td>
<td>۲۷/۸۵ (^{d})</td>
<td>۳۹/۸۸ (^{d})</td>
</tr>
<tr>
<td>۲۶/۵۵</td>
<td>۲۷/۸۵ (^{b})</td>
<td>۳۹/۸۸ (^{c})</td>
</tr>
<tr>
<td>۲۰/۶۵</td>
<td>۳۸/۸۸ (^{d})</td>
<td>۴۹/۵۸ (^{c})</td>
</tr>
<tr>
<td>۲۰/۱۸۷</td>
<td>۳۸/۸۸ (^{d})</td>
<td>۴۹/۵۸ (^{c})</td>
</tr>
<tr>
<td>۲۰/۱۸۷</td>
<td>۴۵/۸۸ (^{d})</td>
<td>۴۹/۵۸ (^{c})</td>
</tr>
<tr>
<td>۲۱/۱۸ (^{a})</td>
<td>۴۵/۸۸ (^{d})</td>
<td>۴۹/۵۸ (^{c})</td>
</tr>
<tr>
<td>۲۱/۱۸ (^{a})</td>
<td>۴۵/۸۸ (^{d})</td>
<td>۴۹/۵۸ (^{c})</td>
</tr>
</tbody>
</table>

در هر سدان میانگین هایی که دارای حداقل یک حرف مشترک هستند اختلاف معنی‌داری ندارند (دانکن ۵%).

علوفه در اواست ساقه رفن با وزن ماده خشک علوفه معادل ۱۵۵/۶ گرم در متر مربع، نسبت به برش علوفه در انتقال ساقه رفن که ۱۴۳/۷ گرم در متر مربع علوفه تولید نمود که موجب داشت (جدول ۱). به طور کلی، با افزایش کود نیتروژن سطح برگ، و شمار پنجه در بوته افزایش یافت که در تجربه تأثیر منفی بر عملکرد علوفه تولید داشت. همچنین، با توجه به اینکه تأثیر در زمان برداشت علوفه به گاه فرست می‌داد، تا رشد رویی بیشتری داشت باشد در نتیجه عملکرد زست‌نده اندازه بیشتر با پوشش‌های انجام شده در این زمینه نیز مشخص شد که با تأخیر در زمان برداشت، زست‌نده توده، درصد ماده خشک، ارتقاء و درصد ساقه نسبت به برگ اندازه‌ی می‌ایجاد، می توجه به نتیجه علوفه بیشتری تولید می‌گردد (۶۸ و ۱۸).

عملکرد کاه و عملکرد بیولوژیک تغییرات سطح نیتروژن و زمان برش علوفه تأثیر معنی‌داری بر عملکرد کاه و بیولوژیک داشت، ولی اثر متقابل آنها اختلاف معنی‌داری را نشان ندادند (جدول ۱). حداقل عملکرد کاه
تأثیر میزان نیتروژن و زمان بر هنفی علوفه با عمکرده

امکانات و همکاران (26) گزارش دانست که کاهش معنی‌دار
عمکرده دانه در برخی علوفه در اواست سطح رفتگی، عمدتاً نتیجه
کاهش شمار دانه در سنبله و کاهش شمار سنبله در اواست سطح،
به دلیل قطع مربی‌شته ساقه اصلی می‌باشد. این مسئله در
آزمایش حاضر به طور معنی‌داری باعث کاهش شمار سنبله در
واحد سطح گردید.

اجزای عملکرد دانه

شمار سنبله در واحد سطح (38) ناشی از تأثیر در برداشت
علوفه، در پوشه‌های دیگر نیز مشاهده شده است. بنابر
رتیب، به نظر می‌رسد حداقل به دلیل ازبرخی علوفه
هنگام حاصل می‌شود که از تأثیر زمانی در برداشت علوفه
پرهیزگردد.

عملکرد دانه

عملکرد دانه در میزان‌های مختلف نیتروژن، زمان بری علوفه و
اثر مناسب آنها اختلاف معنی‌دار نشان داد (جدول 1). بیشترین و
کمترین عملکرد دانه در میان مقدار مختلف نیتروژن به ترتیب
در سطح 0/25 کیلوگرم آور یک هکتار داده است (جدول 1).
برخی علوفه در آغاز ساقه رفتگی، با توجه به معنی‌دار نبودن
با عدم بری علوفه بیشترین و بری علوفه در اواست سطح رفتگی
عمکرده دانه را داشت (جدول 1). بررسی اثر مناسبی
مقدار کوتاه نیتروژن و زمان بری علوفه نشان داد که
بیشترین عملکرد دانه با میانگین 38/0 گرم در متر مربع با
مصرف 90 کیلوگرم نیتروژن خاصل در هکتار و بری علوفه در
آغاز ساقه رفتگی و کمترین عملکرد دانه با میانگین 15/7
گرم در متر مربع در بری 25 کیلوگرم نیتروژن خاصل در هکتار
و زمان بری علوفه در اواست سطح رفتگی تولید گردید، که با تیمار
135 کیلوگرم نیتروژن در هکتار و بری علوفه در اواست سطح
رفتگی مصرف معنی‌داری نداشت (جدول 1).

نمودار (12) گزارش نمود که برخی علوفه در اواست
ساقه رفتگی به دلیل قطع مربی‌شته زیاده و برخی نمی‌باشد. و
نتیجه مقر این نتایج به هنگام برداشت، باعث کاهش شمار
سنبله در واحد سطح می‌گردد. در این آزمایش‌های مشاهده
بوده و همکاران (12) شاوز و موشاکسیون (28) و بینر و
تاپسون (31) معنی‌دار نبودن اختلاف شمار سنبله در متر رمعی
را در میان تیمار عدم بری علوفه و بری علوفه در آغاز ساقه
رفتگی تأثیر می‌نمایند. کاهش حجم شمار سنبله در واحد
سطح تحت تأثیر نیتروژن و زمان رفتگی در نتیجه افزایش تراکم
ساقه، افتاییش رقابت و خروجی‌گی در زمان برداشت علوفه در این

101
جدول ۲. میانگین اجایی عملکرد دانه با مقادیر مختلف نیتروژن و زمان برش علفه

<table>
<thead>
<tr>
<th>نیتروژن (کیلوگرم در هکتار)</th>
<th>وزن هزار دانه (گرم)</th>
<th>شمار دانه در سیلبه</th>
<th>شمار سیلبه در متر مربع</th>
<th>وزن هزار دانه (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۳/۳۸ a</td>
<td>۳۴/۳۹ b</td>
<td>۳۲/۸۶ c</td>
<td>۲۸/۸۹ d</td>
<td>۲۹/۳۶ e</td>
</tr>
<tr>
<td>۲۹/۳۶ a</td>
<td>۴۱/۴۰ b</td>
<td>۴۰/۸۲ c</td>
<td>۳۶/۸۳ d</td>
<td>۴۱/۳۷ e</td>
</tr>
<tr>
<td>۳۰/۰۶ a</td>
<td>۲۸/۱۰ b</td>
<td>۲۶/۶۲ c</td>
<td>۲۲/۶۳ d</td>
<td>۲۹/۱۱ e</td>
</tr>
<tr>
<td>۳۰/۸۶ a</td>
<td>۲۷/۹۰ b</td>
<td>۲۵/۴۹ c</td>
<td>۲۱/۴۳ d</td>
<td>۲۸/۹۱ e</td>
</tr>
<tr>
<td>۲۹/۸۵ a</td>
<td>۲۸/۳۹ b</td>
<td>۲۶/۰۴ c</td>
<td>۲۲/۰۳ d</td>
<td>۲۵/۸۹ e</td>
</tr>
</tbody>
</table>

جدول ۳. اثر متقابل نیتروژن و زمان برش علفه بر عملکرد دانه، شمار سیلبه در متر مربع، شمار دانه در سیلبه، وزن هزار دانه و عملکرد پروتئن علفه جو

<table>
<thead>
<tr>
<th>نیتروژن (کیلوگرم در هکتار)</th>
<th>وزن هزار دانه (گرم)</th>
<th>شمار دانه در سیلبه</th>
<th>شمار سیلبه در متر مربع</th>
<th>وزن هزار دانه (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۳/۳۸ a</td>
<td>۳۴/۳۹ b</td>
<td>۳۲/۸۶ c</td>
<td>۲۸/۸۹ d</td>
<td>۲۹/۳۶ e</td>
</tr>
<tr>
<td>۲۹/۳۶ a</td>
<td>۴۱/۴۰ b</td>
<td>۴۰/۸۲ c</td>
<td>۳۶/۸۳ d</td>
<td>۴۱/۳۷ e</td>
</tr>
<tr>
<td>۳۰/۰۶ a</td>
<td>۲۸/۱۰ b</td>
<td>۲۶/۶۲ c</td>
<td>۲۲/۶۳ d</td>
<td>۲۹/۱۱ e</td>
</tr>
<tr>
<td>۳۰/۸۶ a</td>
<td>۲۷/۹۰ b</td>
<td>۲۵/۴۹ c</td>
<td>۲۱/۴۳ d</td>
<td>۲۸/۹۱ e</td>
</tr>
<tr>
<td>۲۹/۸۵ a</td>
<td>۲۸/۳۹ b</td>
<td>۲۶/۰۴ c</td>
<td>۲۲/۰۳ d</td>
<td>۲۵/۸۹ e</td>
</tr>
</tbody>
</table>

در هر ستون میانگین هایی که دارای حداقل یک حرف مشترک هستند اختلاف معناداری ندارند (دامنه ۵%).
تأیید میزان نیترژن و زمان برش علوفه بر عملکرد

سطح نیترژن دانتست، که با استفاده از روش تپنجه‌زی‌گیا پس از برداشت علوفه گروه‌های 12 و 29، عمدی (6) در این زمینه گزارش نمود که رشد دریافتی جمعیت برای اولین بار افراشی تراکم بوته کاششی‌ها یا رقابت شدید بین بوته‌ها و خواص نیترژن را دلیل این امر نامید.

2. شمار دوره در سنبله‌های: مقایسه‌گیرنده‌های نیترژن، زمان بر شر علوفه و 2 متقابل نیترژن و زمان برش علوفه تأثیر معنی‌داری بر شمار دانه در سنبله و 2/20 دانه در سنبله، 2/29 دانه در سنبله بود که با میزانهای نیترژن 375 و 225 نیترژن در هکتار کوچکتر شمار دانه در سنبله و در سنبله خواص تبیری در میزانهای بالایی نیترژن را می‌توان به دلیل خواصی‌های سافقه در این تیمار دانست، زیرا خواصی‌های باعث اختلاض می‌شود به دانه‌های تولیدی وزن کمتری داشته. کاهش وزن نیترژن مصرفی، به دلیل افزایش ارتفاع، رشد رویه 21 و خواصی‌های سافقه‌ها (7) در جابه جایی مواد فتوستاتیک ساخته شده به دانه‌های صرورت می‌گیرد.

درصد و عملکرد پروتئین علوفه
نتایج تجربه‌هایی که در دسترس و عملکرد پروتئین علوفه مشخص نمود که بین میزان نیترژن و زمان برش علوفه در عملکرد پروتئین علوفه اختلاف معنی‌داری وجود دارد، ولی اثر متقابل آن بر درصد پروتئین علوفه اختلاف معنی‌داری ناشده نشد (جدول 1).
درصد پروتئین و عملکرد آن با افزایش کاربرد نیترژن افزایش داشت، به طوری که پیش‌ترین و کمترین درصد پروتئین و عملکرد پروتئین به ترتیب مربوط به صرف بالاترین و پایین‌ترین سطح نیترژن بود (جدول 1). 4. تأثیر زمان بر شر علوفه در درصد پروتئین کاششی، و عملکرد پروتئین افراشی یافت که گونه‌ها به قبودهای از روش دانه علوفه در مرحله اواست ساقه رفت نسبت

3. وزن نیترژن: وزن هزار دانه در مقایسه‌گیرنده‌های نیترژن اختلاف معنی‌داری نشان داد. به گونه‌ای که پایین‌ترین سطح نیترژن بیشترین و میانگین وزن هزار دانه 23/96 بود.
در مجموع، نتایج حاصل از این آزمایش نشان داد که برای علوفه سبز در آغاز ساقه، تأثیر معنایداری بر عملکرد دانه نبود و حتی باعث افزایش انگکار عملکرد دانه نسبت به تیمار عدم برخ علوفه، به دلیل خواب‌آوری کمتر آن گردید. از سویی، با تأثیر بر علوفه در مرحله اواسپ ساقه، به دلیل قطع مرسوم زایش ساقه اصلی و برخی پنج‌چه، عملکرد دانه به طور معنی‌داری کاهش یافت، و افزایش نیتروژن تنواست خسارت تأخیر در بردشاد را جرایم نمی‌نمود. پیش‌ترین عملکرد دانه (6/186) گرم در متر مربع، مربوط به کاربرد 90 کیلوگرم نیتروژن خاک در هنگام برداشت علوفه در مرحله آغاز ساقه رفت. پیدا کرده بنا بر توجه به قیمت نهایی مؤثر (کود نیتروژن) در افزایش نیتروژن (علوفه سبز + دانه)، تأثیرات نیتروژن زایش ساقه دریافتی از تأثیرات نیتروژن نسبت به تیمار باعث افزایش نیتروژن نسبت به تیمار به‌دست آمده در این استحصال علوفه کافی یافته، از تأثیرات مناسبی در کشت و منظوره برخورد کرده است.

منابع مورد استفاده

1. ایرانی‌ها، م. ا. م. سنگ تریش، و ج. کامی‌وزی. 1375. بررسی اثرات استفاده از وسایل مختلف بر عملکرد علوفه در کشت دو منظوره گندم هیرمند. چهارمین کنگره زراعت و اصلاح نیروی ایران، دانشگاه صنعتی اصفهان.
2. آبیری‌ها، ا. 1375. بررسی اثر باران مختلف بر عملکرد علوفه بر خصوصیات رشد، عملکرد و ارزش غذایی واریته‌های مختلف گیاه کاهشکارشناسی ارشد زراعت، دانشگاه فردوسی مشهد.
3. ریسمن، م. 1373. غلات سرسری اشاتن اشاتن دانشگاه تهران.
4. رامین. 1373. تأثیر سطوح مختلف کود زراعت و تراکم کافی در مقادیر مصول و کیفیت گندم نقش فلات در شرایط آب و هوایی آن، دانشگاه کارشناسی ارشد زراعت، دانشگاه شهید چمران اهواز.
تأثیر میزان تیتروژن و زمان برش علوفه بر عملکرد

12. منصوری فر س. ۱۳۷۱. تأثیر تراکم و برشاشت علوفه سبز بر روی کیفیت و کمیت علوفه و عملکرد دانه کندم. پایان نامه کارشناسی ارشد زراعت، دانشگاه شهید چمران اهواز.

13. هی، ک. م. و آ. ج. واکر. ۱۳۷۳. مقدمات بر فیزیولوژی عملکرد گیاهان زراعی (ترجمه بیحی امام و منصور نیکنژاد). انتشارات دانشگاه شیراز.

