ارزش غذایی تغذه ای مربیات (لیمو و پرتقال) عمل آوری شده با قارچ

 Neurospora sitophila

نوروسپورا سیتوفیلا

کورش ناظم، یوسف روزبهان* و سید عباس شجاعالساداتی

(تاریخ دریافت: ۸/۷/۱۳۸۷، تاریخ پذیرش: ۸/۵/۱۳۸۷)

چکیده

در این بررسی ارزش غذایی تغذه‌ای لیمو و پرتقال عمل‌آوری شده با قارچ نوروسپورا سیتوفیلا از طریق تجزیه شیمیایی، ضرابی

همی‌ماده خشک و هر آن به روش تجزیه‌بذیری ماده خشک و پربویتیون خام به روش in vitro

بدست آمده، مولکولی از هموسولوئی و دیواره سولوئی بدون هموسولوئی مورد مطالعه قرار گرفت. نتایج

پترقل تغذه‌ای عمل‌آوری نشده به ترتیب 3/5، 3/4 و 7/9، تغذه‌ای لیموی عمل‌آوری شده 25/3، 10/2 و 15/5 و 15/6 درصد بود.

تغذه‌ای شیمیایی انجام شده بر اساس تغذه‌ای عمل‌آوری نشده و یا مورد تعیین ثابت گردید. ضرابی

همی‌ماده خشک و آن به روش جدید به ماده خشک گرفته و تغذه‌ای لیموی عمل‌آوری نشده به ترتیب 4/7، 7/5 و 1/7، تغذه‌ای لیموی

عمل‌آوری شده 2/8، 8/1، 2/8 و 8/1 و تغذه‌ای پترقل عمل‌آوری شده 2/8، 8/1 و 1/8

9/1

واژه‌های کلیدی: تغذه‌ای مربیات، نوروسپورا سیتوفیلا، ارزش غذایی، پربویتیون

1. به ترتیب دانشجوی ساقه کارشناسی ارشد و دانشیار علوم دانشگاه تربیت مدرس، تهران

2. استاد بیوتکنولوژی دانشگاه تربیت مدرس تهران

rozbeh_y@modares.ac.ir

495
مقدمه
یکی از اعیادنی مشکلات در ساخت دام و طیور کبوتر کمیاب خواراک دام است. واردات مجموع ا وخواراک دام و طیور در طی سالهای گذشته تجمع بسیاری نسبت به سالهای 1379 تا 1388 هزارتین افزایش یافته است. افزایش این میزان از 990 هزار تا 200 هزار میزان است. این افزایش مربوط به کشاورزان افزایشی است و بیش از حدود 400% کاهش میافتد. همچنین این افزایش موجب شد خواراک دام به عنوان یکی از اعیادنی مشکلات در ساخت دام و طیور کبوتر شود.

مواد و روش‌ها

1. تجزیه شیمیایی

تغییرات لیمو و پرمال درباره آنتی‌بیوتیک‌های اولویتی و آلودگی همگون به دلیل تغییرات شیمیایی قرار گرفته در خانواده از دسته‌کالکول و اکسکس شاهد هست‌های حمایت که در کشور کشور (AOAC) تعیین شد. (۴)

2. مقدار دیوایر سلولی

مقدار دیوایر سلولی با استفاده از محلول شیوده خشی و دیوایر سلولی بدون همی سلولی با استفاده از محلول شیوده استفاده بر اساس روش و سوست و همکاران (۵) تعیین گردید. (۴)

عمل اسیب و نمونه‌ها

الف) نهایی‌العمل

از روی یکی از گروه‌های نمونه‌برداری (Neurospora sitophila) این خواراک جزء دسته آسکوپشت‌ها (ارگانیسم‌های گیاهی) بودند. (این خواراک جزء دسته آسکوپشت‌ها (Neurospora sitophila)
آرژش غذایی نظام‌گذاری‌های لیمویی و پرفتاک (لیمو و پرفتاک) عمل اوئی شده با قارچ

می‌باشد که به عنوان قارچ‌های علی‌لی مکرر کاریابی می‌باشد. آنها در شرایط مطبوع و بی‌سری قادیر به زندگی بوده و ترکیباتی از قبیل گلکوژن، سلولز و کراتین را تجزیه می‌کنند که از سلولر موجه در تالق‌های مربوط به عمیق و گیاهی از آن‌ها به عنوان منبع می‌باشد. استفاده کرده و تولید پروتئین می‌باشد. در شرایط کاملاً استریل به‌طور مثال یک پود میلیوی قارچ تلفیق شده و در دمای 30°C به مدت 48 ساعت گراماکاری شده. پس از این کشت‌های نهایی در دمای 42°C درون یخچال قرار داده شدهند. ترکیب میخی کشت تیکه‌ریز و میخی تلفیق (در یک چرخ) به‌طور خرچنگ بود (19).

گلکوژن 100 گرم، عصاره مخلوط 2 گرم، فسفات هیدروژن‌پاتاسیم (K2HPO4) 10/310 گرم، آورده 9 گرم، سولفات آمونیوم (NH4)2SO4، مس 9 گرم، مش کلسیم (CaSO4)، اسید بروئیک (H3BO3)، مس 8/98 گرم، سولفات مواد (NH4)2 MoO4، 4H2O، آمونیاک (NH3)، نیترات (MnCl2. 4H2O) 8 گرم، کلرید منگنز (CuSO4. 5H2O) 1/22 گرم، کلرید آهن (FeCl3) 3/2 گرم.

برای تهیه کشت نگه‌دارند 100 میلی‌لیتر میکروکول کشت با ترکیب فوق تهیه و در یک ارنل 150 میلی‌لیتر ریخته شد. پس 15 psi از آن‌ها 5/5 ترمیم و در دمای 121°C مش از آن در دمای 121°C مثبت یک طرف در شرایط کاملاً استریل به‌طور مثال یک پود میلیوی قارچ روی کشت به‌طور اولین هم看不到 بک و یک گرم از تالفیق شده و دمای 42°C به مدت 24 ساعت روی هممون دارد 200 دور در دمای 121°C مش از تالفیق شده و کشت تلفیق به‌طور اولیه برای تهیه بک‌های نگه‌داری به‌صورت یک دمای 42°C تک‌قتل شد.

(ج) تلفیق قارچ و عمل اوئی
پس از استریل شدن ارزش و محصولات آنها. عمل تلفیق قارچ بر مقدار 15 گرم از تالفیق لیمویی آسیاب شده برای تعیین مقدار ماده
جدول ۱: مقدار پروتئین خام نیمه‌های روی تقلال‌ها (به ازای هر ۱۰۰ گرم از تقلال‌ها مقدار ۱ میلی لیتر از میوه کشت فارق) در بزرگ‌های و در شرایط استریل انجام شد. سپس این سبیل به دستگاه انکوباتور منتقل شد و به مدت ۱۲۰ ساعت در دمای ۳۵° C قرار گرفتند. پس از کشش ۲۴ ساعت انکوباتور خارج شده و نمونه‌های داخل هر کدام به‌طور جداگانه داخل پرتی‌گازشته شد. این نمونه‌ها داخل آن در دمای ۵۰° C قرار داده شد تا کاملاً خشک شوند. پس از خشک شدن کامل نمونه‌ها به‌طور جداگانه آسیاب شده و میزان پروتئین آنها تعيین شد که به‌طور سریال جهت عمل آوری تعيین گردید. از آنجایی که مکان آنها با یک کد برای تأیید تقلال‌ها درصد پروتئین آنها تغيیر كند، به‌طور مقداری از تقلال‌ها با کد‌های ۴۰ مس و ۱۳ مس اکشانه و مقدار پروتئین آنها تعيين گردید. مقدار پروتئین خام نیمه‌های روی تقلال‌ها در جدول ۱ ارائه داده شده است.

3. تعيين ضرایب هضمي

روي تقلال‌ها به ازای هر ۱۰۰ گرم از تقلال‌ها مقدار ۱ میلی لیتر از میوه کشت فارق) در بزرگ‌های و در شرایط استریل انجام شد. سپس انکوباتور‌ها به دستگاه انکوباتور منتقل شد و به مدت ۱۲۰ ساعت در دمای ۳۵° C قرار گرفتند. پس از کشش ۲۴ ساعت انکوباتور خارج شده و نمونه‌های داخل هر کدام به‌طور جداگانه داخل پرتی‌گازشته شد. این نمونه‌ها داخل آن در دمای ۵۰° C قرار داده شد تا کاملاً خشک شوند. پس از خشک شدن کامل نمونه‌ها به‌طور جداگانه آسیاب شده و میزان پروتئین آنها تعيین شد که به‌طور سریال جهت عمل آوری تعيین گردید. از آنجایی که مکان آنها با یک کد برای تأیید تقلال‌ها درصد پروتئین آنها تغيیر كند، به‌طور مقداری از تقلال‌ها با کد‌های ۴۰ مس و ۱۳ مس اکشانه و مقدار پروتئین آنها تعيين گردید. مقدار پروتئین خام نیمه‌های روی تقلال‌ها در جدول ۱ ارائه داده شده است.

3. تعيين ضرایب هضمي

روي تقلال‌ها به ازای هر ۱۰۰ گرم از تقلال‌ها مقدار ۱ میلی لیتر از میوه کشت فارق) در بزرگ‌های و در شرایط استریل انجام شد. سپس انکوباتور‌ها به دستگاه انکوباتور منتقل شد و به مدت ۱۲۰ ساعت در دمای ۳۵° C قرار گرفتند. پس از کشش ۲۴ ساعت انکوباتور خارج شده و نمونه‌های داخل هر کدام به‌طور جداگانه داخل پرتی‌گازشته شد. این نمونه‌ها داخل آن در دمای ۵۰° C قرار داده شد تا کاملاً خشک شوند. پس از خشک شدن کامل نمونه‌ها به‌طور جداگانه آسیاب شده و میزان پروتئین آنها تعيين شد که به‌طور سریال جهت عمل آوری تعيین گردید. از آنجایی که مکان آنها با یک کد برای تأیید تقلال‌ها درصد پروتئین آنها تغيیر كند، به‌طور مقداری از تقلال‌ها با کد‌های ۴۰ مس و ۱۳ مس اکشانه و مقدار پروتئین آنها تعيين گردید. مقدار پروتئین خام نیمه‌های روی تقلال‌ها در جدول ۱ ارائه داده شده است.

3. تعيين ضرایب هضمي

روي تقلال‌ها به ازای هر ۱۰۰ گرم از تقلال‌ها مقدار ۱ میلی لیتر از میوه کشت فارق) در بزرگ‌های و در شرایط استریل انجام شد. سپس انکوباتور‌ها به دستگاه انکوباتور منتقل شد و به مدت ۱۲۰ ساعت در دمای ۳۵° C قرار گرفتند. پس از کشش ۲۴ ساعت انکوباتور خارج شده و نمونه‌های داخل هر کدام به‌طور جداگانه داخل پرتی‌گازشته شد. این نمونه‌ها داخل آن در دمای ۵۰° C قرار داده شد تا کاملاً خشک شوند. پس از خشک شدن کامل نمونه‌ها به‌طور جداگانه آسیاب شده و میزان پروتئین آنها تعيين شد که به‌طور سریال جهت عمل آوری تعيین گردید. از آنجایی که مکان آنها با یک کد برای تأیید تقلال‌ها درصد پروتئین آنها تغيیر كند، به‌طور مقداری از تقلال‌ها با کد‌های ۴۰ مس و ۱۳ مس اکشانه و مقدار پروتئین آنها تعيين گردید. مقدار پروتئین خام نیمه‌های روی تقلال‌ها در جدول ۱ ارائه داده شده است.

3. تعيين ضرایب هضمي

روي تقلال‌ها به ازای هر ۱۰۰ گرم از تقلال‌ها مقدار ۱ میلی لیتر از میوه کشت فارق) در بزرگ‌های و در شرایط استریل انجام شد. سپس انکوباتور‌ها به دستگاه انکوباتور منتقل شد و به مدت ۱۲۰ ساعت در دمای ۳۵° C قرار گرفتند. پس از کشش ۲۴ ساعت انکوباتور خارج شده و نمونه‌های داخل هر کدام به‌طور جداگانه داخل پرتی‌گازشته شد. این نمونه‌ها داخل آن در دمای ۵۰° C قرار داده شد تا کاملاً خشک شوند. پس از خشک شدن کامل نمونه‌ها به‌طور جداگانه آسیاب شده و میزان پروتئین آنها تعيين شد که به‌طور سریال جهت عمل آوری تعيين گردید. از آنجایی که مکان آنها با یک کد برای تأیید تقلال‌ها درصد پروتئین آنها تغيیر كند، به‌طور مقداری از تقلال‌ها با کد‌های ۴۰ مس و ۱۳ مس اکشانه و مقدار پروتئین آنها تعيين گردید. مقدار پروتئین خام نیمه‌های روی تقلال‌ها در جدول ۱ ارائه داده شده است.
تیپ نتایج تغذیه پذیری میزان تجزیه پذیری ماده خشک و پروتئین نمونه‌ها با استفاده از روش کینه‌های نیالویی انجماد شد (6). نمونه‌ها پس از توزین در داخل کینه‌های دکان‌های قرار گرفته و از طریق فیسوله وارد شکم‌ها گردید. میزان ناب‌پذیری ماده نمونه‌ها در فواصل زمانی مختلف، به‌عنوان پخش تجزیه شده در نظر گرفته شد (6 و 18). برای انجماد آزمایش‌های مربوط به تجزیه پذیری و ضرایب هضم از سه راس گزارش تالشی انجام شده استفاده گردید.

پنجم

نتایج

نتایج به‌دست آمده در جدول 2 نا ۶ آورده شده است. همان‌طور که در جدول ۲ مشاهده می‌شود، میزان خاکستری خام و پروتئین خام در تغذیه‌ی لیمو و پرتقال پس از عمل آوری به‌طور معنی‌داری افزایش یافته است (P<0.01). اما میزان افزایش ایجاد شده در محترم خاکستری خام تغذیه پرتقال نسبت به تغذیه لیمو کمتر بود. میزان ماده آلی و ADF پس از عمل آوری در هر دو نوع تغذیه به‌طور معنی‌داری کاهش یافته است (P<0.01).
جدول 3: میزان ماده خشک (درصد)

<table>
<thead>
<tr>
<th>ماده خشک</th>
<th>درصد کاهش وزن</th>
<th>لیموی خام</th>
<th>پرنشاک عمل آوری شده</th>
<th>پرنشاک خام</th>
</tr>
</thead>
<tbody>
<tr>
<td>21/9</td>
<td>82/5</td>
<td>27</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>13/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 4: قابلیت هضم ماده خشک ماده آهن در ماده خشک و انرژی قابل متابولیسم (MJ/Kg DM)

<table>
<thead>
<tr>
<th>مقدار 1</th>
<th>مقدار t</th>
<th>مقدار 2</th>
<th>مقدار t</th>
</tr>
</thead>
<tbody>
<tr>
<td>37/5</td>
<td>91/7</td>
<td>79/3</td>
<td></td>
</tr>
<tr>
<td>39/4</td>
<td>88/1</td>
<td>39/7</td>
<td></td>
</tr>
<tr>
<td>32/25</td>
<td>13/8</td>
<td>13/8</td>
<td></td>
</tr>
</tbody>
</table>

جرحه مختلف در هر روز فراگیری هدف قابلیت هضم هزاره دوم آزمایش در صفحات مختلف که درست می‌شود که در جدول 3 نشان داده شده است.

نته‌گیری توجه در این آزمایش تغییرات ایجاد شده در میزان ماده خشک نمونه‌های عمل آوری شده نسبت به نمونه‌های خام می‌باشد که در جدول 3 نشان داده شده است.

همان‌گونه که ماهویه‌های می‌شود پس از عمل آوری، مقدار ماده خشک نمونه‌های کاهش یافته که در مقدار ماده خشک با استفاده از رابطه زیر محاسبه شد:

\[
\text{وزن ماده خشک نمونه اولیه} = \left(\frac{\text{وزن ماده خشک نمونه}}{0.5} \right) \times \text{کاهش وزن}
\]

[4] مطالب جدول 3 پس از عمل آوری، ضرایب قابلیت هضم ماده خشک و ماده آهن قابل هضم در ماده خشک و انرژی قابل متابولیسم به ازای هر کیلوگرم ماده خشک در هر دو تروک افزایش یافت (P<0.01).

نتایج مربوط به تجزیه‌پذیری ماده خشک نمونه‌ها در...
جدول: تجزیه‌پذیری و مشخص‌های تجزیه‌پذیری ماده خشک

<table>
<thead>
<tr>
<th>تفکل</th>
<th>لیمو</th>
<th>پرتونت</th>
<th>عامل آوری</th>
<th>شده</th>
<th>مقدار 1</th>
<th>عامل آوری</th>
<th>شده</th>
<th>مقدار 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/5</td>
<td>845</td>
<td>77</td>
<td>15/4</td>
<td>841</td>
<td>75/3</td>
<td>87/5</td>
<td>85/3</td>
<td>66/3</td>
</tr>
<tr>
<td>17/5</td>
<td>755</td>
<td>68/7</td>
<td>37/2</td>
<td>75/2</td>
<td>66/3</td>
<td>75/2</td>
<td>66/3</td>
<td>66/3</td>
</tr>
<tr>
<td>15/5</td>
<td>69/9</td>
<td>63/6</td>
<td>49/1</td>
<td>69/6</td>
<td>49/3</td>
<td>69/6</td>
<td>49/3</td>
<td>49/3</td>
</tr>
<tr>
<td>6/5</td>
<td>82/5</td>
<td>77/8</td>
<td>17/5</td>
<td>77/5</td>
<td>66/3</td>
<td>77/5</td>
<td>66/3</td>
<td>66/3</td>
</tr>
<tr>
<td>3/5</td>
<td>25/8</td>
<td>21/3</td>
<td>3/5</td>
<td>25/3</td>
<td>21/3</td>
<td>25/3</td>
<td>21/3</td>
<td>21/3</td>
</tr>
<tr>
<td>0/5</td>
<td>7/6</td>
<td>7/6</td>
<td>0/6</td>
<td>7/6</td>
<td>7/6</td>
<td>7/6</td>
<td>7/6</td>
<td>7/6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ضریب تجزیه‌پذیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
</tr>
<tr>
<td>0/3</td>
</tr>
<tr>
<td>0/5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>مشخص‌های تجزیه‌پذیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
</tbody>
</table>

1. میزان عبور مواد خوراکی از شکم‌های به روده در سطح نگهداری (بخش/ساعت).
2. میزان عبور مواد خوراکی از شکم‌های به روده در سطح نگهداری (بخش/ساعت).
3. میزان عبور مواد خوراکی از شکم‌های به روده در سطح نگهداری (بخش/ساعت).

بحث:

تکیه شیمیایی

بر اساس نتایج ارایه شده در جدول 1 بین دصرد پرتونت خام نمونه‌های عمل آوری نشده و نمونه‌های عمل آوری شده تفاوت معنی‌داری (P<0.01) مشاهده شد. دلیل آن افزایش بالای دصرد پرتونت نمونه‌ها بعد از عمل آوری می‌باشد. به نحوی که پس از عمل آوری، دصرد پرتونت خام تفکل لیمو ۴ برابر و دصرد پرتونت خام تفکل لیمو ۴/۵ برابر شد.

دلیل این افزایش پس از عمل آوری، رشد قارچ بر روی تفکل افزایش یافته است. قارچ‌ها بیشتر مواد سلول‌های لیگوسولون موجود در تفکل را توسط آنزیم‌های خارج سلولی مصرف کرده و تولید انرژی، پرتنی و دی اکسیدکننده می‌نمایند (21). قارچ‌ها از سلول موجود در تفکل مربوط به عوامل منع کردنی و از میزان افزایش شده به تفاوت استفاده کرده و تولید پرتنی می‌کنند. این عمل سبب افزایش دصرد پرتونت خام تفکل عمل آوری شده می‌گردد (10). بکی از دلایل افزایش

پروتونی خام، ممکن است افزوده شده به تفکل‌ها در هنگام عمل آوری است (از جمله آمودیک). از طرف دیگر، قارچ

نوروسورا سنتیونیا افزوده شده به تفکل، حاوی سطح بالایی از پروتئین قارچ است (25 درصد). علاوه بر این، قارچ‌ها موجب کاهش کل ماده خشک می‌گردند. لذا از این میزان می‌توان به افزایش مقدار پرتنت خام بر اساس مقدار خشک تا حدودی افزایش می‌یابد. درصد پرتنت خام تفکل نسبت به مقدار ارایه شده در میزان تحمل شده توسط آزمایش و ایجاد می‌کرده که دلیل

آن شاید تفاوت در نوع نمونه‌های مورد استفاده در میزان افزایش شجاعی، ساختار و همکاران (21) میزان

افراشی دصرد پرتنت خام پس از عمل آوری در ان تحقیق

بیشتر بود (12) در مقایسه با ۱۸/۸ برای تفکل لیمو و ۱۸/۲در مقایسه با ۱۸/۲ برای تفکل پرتنت حاصل در مقایسه با ۱۸/۲ برای تفکل پرتنت و در مقایسه با از آمایش باز تدوین و همکاران (8) میزان افزایش دصرد پرتنت خام کمتر بود.
جدول 6- تغییراتی و مشخصه‌های تجزیه‌پذیری پروتئین

<table>
<thead>
<tr>
<th>تغییرات پرتکنال</th>
<th>تغییرات لیمو</th>
<th>ضریب تجزیه‌پذیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار عمل آوری شده</td>
<td>خان</td>
<td>مقدار عمل آوری شده</td>
</tr>
<tr>
<td>20/6</td>
<td>4/0/6</td>
<td>3/5/1</td>
</tr>
<tr>
<td>19/7</td>
<td>3/8/1</td>
<td>3/3/5</td>
</tr>
<tr>
<td>21/1</td>
<td>3/6/2</td>
<td>3/7/1</td>
</tr>
<tr>
<td>22/7</td>
<td>2/3/5</td>
<td>2/1/8</td>
</tr>
<tr>
<td>11</td>
<td>19/3</td>
<td>1/3/7</td>
</tr>
<tr>
<td>0/278</td>
<td>19/5</td>
<td>0/1830</td>
</tr>
<tr>
<td>25/5</td>
<td>8/3/4</td>
<td>2/4/7</td>
</tr>
<tr>
<td>24/3</td>
<td>7/8/4</td>
<td>2/8/4</td>
</tr>
<tr>
<td>24/2</td>
<td>7/3/5</td>
<td>2/4/3</td>
</tr>
</tbody>
</table>

1. میزان عبور مواد خوراکی از شکم به روده در سطح نگه‌داری (بضایا/ساعت).
2. میزان عبور مواد خوراکی از شکم به روده از دو پراست سطح نگه‌داری (بضایا/ساعت).
3. میزان عبور مواد خوراکی از شکم به روده از سه پراست سطح نگه‌داری (بضایا/ساعت).

ضریب تجزیه‌پذیری: نتایج پرتوئین (1/).

خرور مختل در هر ریف نشان دهنده تفاوت تحلیلی مورد آزمایش در صفت مذکر می‌باشد (P<0/01).
آزمایشات آنها، در این نوع از خرما که‌است (۱۴). درصد ماده آتی قابل هضم در خشک و میزان بر اساس نتایج قابل متابولیسم به‌علت هم سلولی بود. هر کیلوگرم ماده خشک بیش از عمل آوری افزایش یافت که این افزایش از نظر آماری معنی‌دار بود. در گزارش ۱۱ درصد مورد افزایش ضرایب هضم ماده خشک و آنچه تقلید گردید از عمل آوری شده بیا قرار ترکیب نوروسپورا سپتیفیلا استفاده شده و قرار را تجربه می‌کند (۲۰). مقدار دیواره سلولی و دیواره سلولی برون همی سلول ترکیب‌ها در تحقیق حاصل با مقدار ارائه شده توسط AFRC (۶) متفاوت است. که در این تحقیق مورد می‌گیرد نورسپورا سپتیفیلا به‌طور درگاه افزایش است به‌جای در این تحقیق از ترکیب‌های سر و همکاران (۲۰) انجام داده. درصد دیواره سلولی و دیواره سلولی بدن همی سلولی افزایش یافت (به ترتیب از ۱۵۰ به ۱۳۳/۲ و از ۱۱۲/۲ درصد برای تلفیق لیمو و از ۱۵۵ به ۱۳۸/۷ و از ۱۱۹/۲ درصد برای پرتقال که در این تحقیق از این تحقیق در تحقیق مورد استفاده شده و قرار نمی‌گیرد. (Penicillium roqueforti) روزگاری (۲۰).

قابلیت هضم

قابلیت هضم ماده خشک و ماده آلی در تقلید پس از عمل آوری با لیمو که محدودیت معنی‌داری (۱/۰) باشد، افزایش با قابلیت هضم ماده خشک نورسپورا سپتیفیلا به پرتقال همان یک ترکیب از ۱۵۳ و ۱۲ درصد افزایش قابلیت هضم ماده آلی به ترتیب یک و ۱۴ درصد بود. افزایش قابلیت هضم در تقلید بسیار در عمل آوری شده بیا در دیواره سلولی و دیواره سلولی برون همی سلولی ترکیب‌ها در (۲) و افزایش میزان محلول دیواره سلولی (د) کاهش دیواره سلولی و دیواره سلولی بدن همی سلول ترکیب‌ها در شکم به کمک می‌کرایه‌ای به‌ثبت می‌رسد که در این تحقیق مورد استفاده شده و قرار نمی‌گیرد.
آب در تنوع‌های عمل‌آوری شده، به‌طور کلی تخمین این تنوع‌ها
با سرعت مشاهده تنوع‌های خام تجزیه شده است. بین میزان
مواد محلول در آب و میزان مواد قابل تخمیر در شکم‌های
تنوع‌های مورد استفاده در این آزمایش و مقدار ارائه شده توسط
AFRC (3) تفاوت وجود دارد که دلیل آن احتمالاً تفاوت بین
تنوع‌های استفاده شده در دو آزمایش است. سرعت تجزیه
پخش 5 در دو آزمایش یکسان بوده است.
همان‌گونه که در جدول 1 مشاهده می‌شود، تجزیه پذیری
تنوع‌های لیمو و پرتقال عمل‌آوری شده نسبت به تحلیل‌های
افزایش یافت است. دلیل افزایش تجزیه پذیری ماده خشک
تنوع‌های پس از عمل‌آوری کاهش درصد دیده سلول و دیوای
سلول به درون سلول آنها است. همچنین افزایش مواد
محلول در آب پس از عمل‌آوری باعث می‌شود که
میکروگانیسم شکمی دسترسی بیشتری به منابع ارزی داشته و
با راه‌اندازی مواد غذایی را تجزیه کند با توجه به این
موضوع می‌توان تجربه گرفت که دام می‌تواند با راهنما مقایسه
زیادی از تناقل لیمو و پرتقال عمل‌آوری شده را در جیوه روزانه
صرف کند بدون آن که میزان خوراک مصرفی روزانه کاهش یابد.
نتایج بدست آمده از این تحقیق با تاییک دشتن (2) مطابقت دارد.

تجزیه پذیری پرتوئین

همان‌گونه که در جدول 2 ملاحظه می‌شود میزان پروتئین
محلول در آب (یخچال) پس از عمل‌آوری تقلیل هم و
پرتقال به میزان زیادی افزایش یافت مقدار پخش تقلیل
لیمو عمل‌آوری شده 1/89 برابر تقلیل لیمو خام و مقدار
پخش تقلیل عمل‌آوری شده 1/84 برابر تقلیل پرتقال
خام. بود. تجزیه دیواره سلولی تقلیل ها توسط قارچ سبب
افزایش پخش محلول می‌شود افزایش میزان مواد محلول در آب
موجب ایجاد انزوی اولیه بیشتری در سلول‌های شکم‌های
به‌طور کلی، عمل آوری تقلیل مركبات با فاز یوروسپورا
سبت این امر از طریق موجب تجزیه پذیری مواد غذایی می‌کرایه
 شکم‌های شده و این امر تا حدی به سبب تقلیل شکم‌های
 موجود در شکم‌های افزایش مصرف خوراک مواد توسط
 بیشتر می‌گردد (10). در تنوع‌های پرتقال عمل‌آوری شده میزان

504

