تعیین زیست فراهمی چند نمونه مختلف دی کلیسیم فسفات تولیدی ایران و اثرات آنها بر عملکرد مرغ‌های تخم‌گذار

علي مشگلی، جواد پورضها و عبدالحسین سمعی

(تاریخ دریافت: 85/05/12 تاریخ پذیرش: 85/7/3)

چکیده

این آزمایش به منظور مقایسه زیست فراهمی و بررسی آثار چند نمونه مختلف دی کلیسیم فسفات تولیدی در کارخانه‌های داخل کشور (ایران فسفات و درون‌نشالی، گزارش فقری ایران، گزارش شیمی، دان آور) در مرغ‌های تخم‌گذار به اجرا درآمد. 16 قطعه مرغ کوچک سنی از سویه‌های لاین ـ W36 در سن 37 هفته‌گی به مدت 38 روز به 8 چرخه (که تفاوت با لحاظ منع تأمین کننده فسفر متفاوت بودند) مغذی و در قالب یک طرح بلدک کاملاً تصادفی با 8 تیمار و 2 بلدک و 5 تلفه سرگ به ازای هر بلدک مربی شدند. آزمایش مدت 90 روز (بعنی 82 هفته‌گی) پطول انجامید. در این آزمایش صفات متفاوت پوسه، ضخامت پوست، درصد پوست، وزن تخم‌مرغ، درصد تولید، مصرف خوراک، ضربه تبدیل خوراک و وزن تخم‌مرغ اندازه‌گیری و در نهایت با طرح کرده‌ای خرده‌شده در زمان با طرح یابه‌بلدک کاملاً تصادفی مورد تجزیه و تحلیل قرار گرفتند. هم‌چنین صفات خاکستر، کلیسیم و فسفر استخوان در‌شتی در دوره‌ای از اندازه‌گیری شدند. بین تیمارها از لحاظ صفات پوست، درصد خاکستر پوست، وزن تخم‌مرغ، مصرف خوراک، درصد خاکستر استخوان در کلیسیم استخوان اختلاف معنی‌داری وجود داشت (P < 0.05). سایر صفات اندازه‌گیری شده تفاوت معنی‌داری نداشتند. ارزش پیلورژیکی نسبی نمونه‌های دی کلیسیم و مغذی در معادله: \\[F (ایران فسفات) = \(b_0 + b_1 \times P + b_2 \times F \)\\] دو ضریب با دقت 0.05 و 0.00 مختلف بود. دو ضریب با دقت 0.00 و 0.01 با شد و در صفات مختلف پیلورژیکی دی کلیسیم فسفات در صفات مختلف ایران فسفات لحاظ شد. با توجه به روند موجود در تابی تشیع و ارزش پیلورژیکی به دست آمده نمونه F ایران فسفات بعنوان نمونه بهتر و بستر معرفی شد.

واژه‌های کلیدی: زیست فراهمی، دی کلیسیم فسفات، مرغ تخم‌گذار، کلیسیم پوسه

مقدمه

نیاز طوری را تأمین می‌کند(3) نقش اساسی و سبب ارزش‌دهی فسفر و کلیسیم در فضاهای فیزیولوژیکی و موسوم و ساز اتمام دام و طور، بروز پیامده‌ها و ناهنجاری‌های بشرمان و کشته‌نشانی از طیور محصول می‌شود. پس از 85 درصد فسفر معدنی مورد 1. به ترتیب دانشجویی سابق کارشناسی ارشد، استاد و استادان علمی دانشگاه دانشگاه صنعتی اصفهان Japour@cc.iut.ac.ir

* مسئول مکاتبات. پست الکترونیکی:
کمربندی از آراژی این عناصر کاتیونی (نیटرات) در جیره‌های غذایی و سرانجام وجود رابطه تنگاتنگ و نیزدیک میان فسفر و کلسیم در
بین و رابطه منفی که بین آنها برای چند هزار و دو عصر لازم
است، نشان دهنده ضرورت برخورداری از تخصص ویژه و
ماشین ابزار پیشرفته در فرآیند تولید ملکی فسفات است.

فسفر در بسیاری از اعمال حیاتی و تأمین فعل و افعالات
ملکی فسفات می‌باشد. از نظر متابولیک احتمالاً فسفر
فعال 30% در دردست مصرف است. این مقدار فسفر در
رژیم غذایی انسان باید از دسترسی داشته باشد.

مواد و روش‌ها
نیازمندی آزمایشی شامل هشته‌های چربی و هر جیره شامه‌ای بود. در هر فقره (هر بلوک)، یک گشت نگه‌داری می‌شد.

در این آزمایش از یک جیره پایه بکان استفاده شد و در کلسیم
فسفات‌های موجود آزمایشی به یک افزوده گردید. هشت نمونه
تولیدی از کلسیم ملکی فسفات شامل نمونه‌های تولیدی کارخانه‌های
ایران فسفات، برنج نشات، فسفر ایران، دام رازی کمیا، یوبی
خجسته، دان آور، کیر (قوامی) و گل‌کیکانی بودند. نمونه
تولیدی ایران فسفات به‌عنوان تولید محصول مطلوب با استانداردهای
ارویا (۲۴) و همچنین تایید استاندارد بودن محصول تولیدی از
طرف‌های مشتری و تحقیقات مصرفی ایران و با رعایت
استاندارد‌های طبیعی (۱۹) و عبنان استاندارد مورد
استفاده قرار گرفت. بر اساس ادعای خود کارخانه‌های تولیدی
میزان کلسیم و فسفر موجوده‌ها را بررسی می‌کردند و نمونه
شده بود. حداقل 17 درصد فسفر و حداقل 21 درصد کلسیم بود.

بر اساس حداقل کلسیم و فسفر موجود روی بسته‌ها و بر اساس
تجربه‌های غذایی (National Research Council) NRC میزان ۸ درصد از هر نمونه به‌جای پایه اضافه گردید.

چرخه‌های آزمایشی ۲۰ در کنار هر روز یک خوراک و به سطح‌های جلوی فشر بر
اساس نقشه آزمایش قرار می‌گرفتند. آب به‌صورت آزاد در اختیار
می‌گرفته شد. دو دوره ماه عادت ده چه به جیره‌ها انجام شد.
تعیین زیست فراهم چند نمونه مختلف دی کلسیم فسفات تولیدی ایران...

و یکسان سازی در تولید صورت گرفت.

در این طرح از ۱۶ فقره مرغ تازه که به‌عنوان سوپه‌های لاین W ۳۶ از سن ۲۶ هفته‌گی تا ۲۸ هفته‌گی در قالب طرح پایه بلک W کامل تست‌های استفاده شد. نمونه‌های تخم‌مرغ به آزمایشگاه متقل و صفات مربوط به تخم‌مرغ شامل ژن تخم‌مرغ، مقاومت پوسته، ضخامت پوسته، وزن پوسته، خاکستر پوسته، درصد کلسیم و فسفر پوسته اندازه‌گیری شد. برای خشک کردن پوسته از آن ۶۰°C به مدت ۸ ساعت استفاده شد. برای تهیه خاکستر پوسته از کوره‌کننده به درجه حرارت ۶۰۰°C به مدت ۱۲ ساعت استفاده شد. برای اندازه‌گیری کلسیم و فسفر یا دستگاه جذب (Atomic Absorption) انیمی و دستگاه اسکوپوتروپی و طبقه (AOAC) روش پیشنهادی انجمن رسمی شیمی تجزیه (v) استفاده شد.

با استفاده از داده‌های تخم‌مرغ (W)، ارتفاع سفیده (H) و جرم ژنی به فرمول زیر واحدها و میزان‌های

\[
H = 100 \log (H + 7.57 - 1.7 W^{0.37})
\]

صفات تولیدی زیر با استفاده از داده‌های تولید روانه تخم‌مرغ و نمونه‌های مختلف ماهیان غذا محاسبه گردیدند. فرمول محاسبه این صفات در زیر آورده شده است.

\[
\text{اعداد تخم‌مرغ در } 28 \text{ روز} = x \times \frac{100}{228}
\]

[۱] روش محاسبه ارزش پیلوزیک در محدوده مختلف دی کلسیم

\[
Y_{ij} = \mu + R_i + A_i + (AR)_{ih} + B_j + (BR)_{jh} + (AB)_{ij} + e_{ij}
\]

[۶] مدّل طرح

ابت‌آزمایش با ۸ تیمار و ۴ بلک به طرح پایه بلک کامل‌الصدای (Split plot designs) در قالب طرح ۴ تیمار خشک‌داده در زمان انجام شد. ۸ تیمار نمونه‌های مختلف دی کلسیم فسفات (A,B,C,D,E,F,G,H) بودند که در چهار دوره ۱۵ روز تخت اطلاعات شده و در نهایت در ۳ دوره یک‌ماهه مورد تجربه آماده قرار گرفتند. مدل طرح برای صفات که در چند دوره اندازه‌گیری شده، به صورت زیر بود:

\[
Y_{ij} = \mu + R_i + A_i + (AR)_{ih} + B_j + (BR)_{jh} + (AB)_{ij} + e_{ij}
\]

[۶]
جدول 1. آزمایشات و ترکیبات چربی پایه

<table>
<thead>
<tr>
<th>ماده خوراکی</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>درت</td>
<td>4/7</td>
</tr>
<tr>
<td>کتنجلا سوبا</td>
<td>19</td>
</tr>
<tr>
<td>جو</td>
<td>2/75</td>
</tr>
<tr>
<td>پوست</td>
<td>1</td>
</tr>
<tr>
<td>صدف</td>
<td>8</td>
</tr>
<tr>
<td>دی گلیسم فسفات*</td>
<td>0/8</td>
</tr>
<tr>
<td>مکمل معدهٔ **</td>
<td>0/25</td>
</tr>
<tr>
<td>مکمل ویتامین***</td>
<td>0/25</td>
</tr>
<tr>
<td>نمک</td>
<td>100/01</td>
</tr>
</tbody>
</table>

درصد جمع ترکیبات محاسبه شده

* از دیگر فسفات‌های تولیدی در کارخانه‌ها مشابه به مقدار مورد نیاز به صورت جدایانه به جیره پایه اضافه شده.

** استفاده از این مقدار مکملی عناصر زیر را در هر کیلوگرم جیره تأمین کرده است: 50 میلی گرم نیایش 5 میلی گرم سس، 1 میلی گرم کلار، 1 میلی گرم بی‌سیناپس و 200 میلی گرم کولن کراید.

*** استفاده از این مقدار مکمل ویتامین، ویتامین‌های زیر را در هر کیلوگرم جیره تأمین نموده است: 1000 واحد ویتامین A و 1250 واحد ویتامین D3 و 200 واحد ویتامین E و 15 میکروگرم H و 200 میلی گرم کولن کراید.

\[y_{ij} = \mu + T_i + R_j + e_{ij} \]

ک = اثر متقابل کرم اصلی با کرت فرعی

\[(AB)_{ik} = \text{مقدار مشاهده در کرت فرعی} \]

\[Y_{ijk} = \text{مقدار مشاهده در کرت فرعی} \]

\[b = \text{میانگین مشاهده‌های کل آزمایشی} \]

\[k = \text{میانگین مشاهده‌های کل آزمایشی} \]

\[R = \text{میانگین مشاهده‌های کل آزمایشی} \]

\[T = \text{میانگین مشاهده‌های کل آزمایشی} \]

\[y_{ijk} = \mu + T_i + R_j + e_{ij} \]

\[V = \text{مقدار مشاهده} \]

\[(A)_{ik} = \text{میانگین مشاهده‌های کل آزمایشی} \]

\[(B)_{jk} = \text{میانگین مشاهده‌های کل آزمایشی} \]

\[(AB)_{ijk} = \text{میانگین مشاهده‌های کل آزمایشی} \]

\[(V)_{ijk} = \text{میانگین مشاهده‌های کل آزمایشی} \]

\[k = \text{میانگین مشاهده‌های کل آزمایشی} \]

\[T = \text{میانگین مشاهده‌های کل آزمایشی} \]

\[R = \text{میانگین مشاهده‌های کل آزمایشی} \]

\[e_{ij} = \text{میانگین مشاهده‌های کل آزمایشی} \]

\[y_{ijk} = \text{میانگین مشاهده‌های کل آزمایشی} \]

\[(V)_{ijk} = \text{میانگین مشاهده‌های کل آزمایشی} \]

\[k = \text{میانگین مشاهده‌های کل آزمایشی} \]

\[T = \text{میانگین مشاهده‌های کل آزمایشی} \]

\[R = \text{میانگین مشاهده‌های کل آزمایشی} \]
جدول 2. تأثیر نمونه‌های مختلف کلیسم فسفات و دوررهای مفاوت آزمایشی بر ضخامت کیفی پوسته متفاوت (میانگین±خطای استاندارد)

<table>
<thead>
<tr>
<th>منبع</th>
<th>تمیز کرده</th>
<th>نمونه 1</th>
<th>نمونه 2</th>
<th>نمونه 3</th>
<th>نمونه 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(کیلوگرم پر) (میلیتر)</td>
<td>(درصد)</td>
<td>(درصد)</td>
<td>(درصد)</td>
<td>(درصد)</td>
<td>(درصد)</td>
</tr>
<tr>
<td>A</td>
<td>87/0</td>
<td>90/5</td>
<td>91/0</td>
<td>92/0</td>
<td>90/5</td>
</tr>
<tr>
<td>B</td>
<td>88/0</td>
<td>92/0</td>
<td>93/0</td>
<td>94/0</td>
<td>91/0</td>
</tr>
<tr>
<td>C</td>
<td>89/0</td>
<td>93/0</td>
<td>94/0</td>
<td>95/0</td>
<td>92/0</td>
</tr>
<tr>
<td>D</td>
<td>90/0</td>
<td>94/0</td>
<td>95/0</td>
<td>96/0</td>
<td>93/0</td>
</tr>
<tr>
<td>E</td>
<td>91/0</td>
<td>95/0</td>
<td>96/0</td>
<td>97/0</td>
<td>94/0</td>
</tr>
<tr>
<td>F</td>
<td>92/0</td>
<td>96/0</td>
<td>97/0</td>
<td>98/0</td>
<td>95/0</td>
</tr>
<tr>
<td>G</td>
<td>93/0</td>
<td>97/0</td>
<td>98/0</td>
<td>99/0</td>
<td>96/0</td>
</tr>
<tr>
<td>H</td>
<td>94/0</td>
<td>98/0</td>
<td>99/0</td>
<td>100/0</td>
<td>97/0</td>
</tr>
</tbody>
</table>

نکته:
- تئور جیوهای آزمایشی (R) = T
- هر یک از این تئورها با مانگانس به تامین می‌رسد.
- میزان آزمایشی داده‌های حاصل از آزمایش توسط نرم‌افزار SAS تجزیه و تحلیل قرار گرفت و مقایسه مانگانس انجام شد.
- تغییر در ضخامت در بین تیمارها و دوره‌ها اعداد به حذف مشاهده از نظر آماری تفاوت معنی‌داری ندارند (P>0/05).

نتایج و بحث

صفات کیفی

به هیچ‌کدام از نمونه‌های مختلف کلیسم فسفات تفاوت معنی‌داری نداشتند (P>0/05) از لحاظ مفاوت پوسته تخم‌مرغ، فسفر پوسته کلیسم پوسته و مایعه مشاهده نشد. این اثرات در جدول 2 آمده است. بیشترین میانگین مفاوت پوسته از نظر عددی مربوط به تیمار E، خاصیت آزمایشی داده‌های حاصل از آزمایش توسط نرم‌افزار SAS تجزیه و تحلیل قرار گرفت و مقایسه مانگانس انجام شد.

میزان آزمایشی داده‌های حاصل از آزمایش توسط نرم‌افزار SAS تجزیه و تحلیل قرار گرفت و مقایسه مانگانس انجام شد.
آزمایشی از لحاظ بیشینه صفات کیفی با پوسته تفاوت معنی‌داری وجود نداشت (P<0/05). در اثر تغییرات بین نمونه‌های مختلف و دردهای متفاوت آزمایشی بر هیچ‌کدام از صفات کیفی پوسته معنی دار (P<0/05) نشد. نتایج به‌دست آمده نتایج آزمایش کششی (23) را تایید می‌کنند.

با توجه به اینکه بخش عدم ساختان پوسته تخم‌مرغ را کربنات کلسیم ترکیب می‌دهد، صفات کیفی پوسته تخم‌مرغ به معنی کلسیم چربی پشت و واپس‌باند. یکی از دلایل وجود اختلاف معنی‌دار بین تیمارهای مختلف می‌تواند بیشتر به‌صورت عمل اوری این نمونه‌ها در خارج‌البرنج تولید کننده مربوط باشد. به‌عنوان مثال کربنات کلسیم بهبود شده جهت ساخت در کیفیت سفید به دلیل اینکه تکرار اثر تهیه‌ماین می‌تواند در کیفیت سفید کلسیم لوئیدی اثر داشته باشد (21-22). لازم به ذکر است که علیرغم تأثیر بخش عدم کلسیم چربی به صورت به علت مشابه بدون صدف به‌کار برده شده تفاوت موجود نمی‌تواند با هم‌توان باشد.

جوانهری و همکاران (13) علت وجود اختلاف بین صفات کیفی پوسته تخم‌مرغ‌ها به معنی میزان کلسیم نمونه‌های متفاوت ذکر کرد. راش و همکاران (26) بیان کرد تفاوت صفات کیفی پوسته به‌طور معنی‌داری به‌وسیله سطوح کلسیم و فسفر و معنی آن تحت تأثیر قرار می‌گیرد. هورنر و بار (19) عنوان کردند که تفاوت عده در صفات کیفی پوسته ناشی از میزان ایقاء کلسیم جیره است. در سهم‌هایی که درصد پوسته و ضخامت پوسته بالا داشتند نشان داده شده است که میزان پروتئین ناقل کلسیم (Calcium binding protein, CaBP) درده بیشتر است.

مشاهده با تُبیه آزمایش دیگر (25) چنین هنوز پژوهش می‌رسد که میزان فسفر با منع هیچگونه تأثیر بر کیفیت داخلی از جمله واحدهاها ندارد. بنابراین می‌رسد که یک بازی از میزان فسفر کبسی در میزان ضخامت پوسته رونده مشابهی مشاهده شود. به‌طوری که گفته‌شد که از میزان فسفر کبسیز زمان به‌جای در میزان فسفر کبسی و در میزان ضخامت پوسته رونده مشابهی مشاهده شود. به‌طوری که گفته‌شد که از میزان فسفر کبسیز زمان به‌جای در میزان فسفر کبسی و در میزان ضخامت پوسته رونده مشابهی مشاهده شود. به‌طوری که گفته‌شد که از...
جدول ۳. تأثیر نمونه‌های مختلف در کلسیم فسفات و دوره‌های متغیر آزمایش بر ضریب تخم‌مرغ

<table>
<thead>
<tr>
<th>ضریب تخم‌مرغ</th>
<th>مصرف خوراک (گرم امرغ/ور)</th>
<th>تولید تخم‌مرغ (گرم)</th>
<th>وزن تخم‌مرغ (گرم)</th>
<th>منع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>باده تخم‌مرغ</td>
<td>48/2 ± 0/8</td>
<td>105/7 ± 0/1/1 105/3/1/1</td>
<td>61/9 ± 0/6/1</td>
<td>A</td>
</tr>
<tr>
<td>47/8 ± 0/4</td>
<td>101/6 ± 0/1/1 104/6/1/1</td>
<td>59/0 ± 0/6/7</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>47/6 ± 1/0</td>
<td>105/6 ± 0/2/4 100/1/2/4</td>
<td>60/5 ± 0/7/5</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>45/2 ± 1/0</td>
<td>78/5 ± 0/1</td>
<td>59/0/ ± 0/6/3</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>28/6/ ± 0/4</td>
<td>104/2 ± 0/3/1 104/3/1/1</td>
<td>63/2 ± 0/6/8</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>29/6 ± 0/4</td>
<td>104/2 ± 0/2 2/1/0/2/1</td>
<td>60/6 ± 0/7/8</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>49/6 ± 0/4</td>
<td>105/2 ± 0/1/4 105/1/4/1</td>
<td>60/6 ± 0/7/8</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>47/9 ± 0/4</td>
<td>105/2 ± 0/2/4 105/2/1/4</td>
<td>60/6 ± 0/7/8</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>48/6 ± 0/4</td>
<td>105/6 ± 0/2/4 105/6/1/4</td>
<td>60/6 ± 0/7/8</td>
<td>دوره (1)</td>
<td></td>
</tr>
<tr>
<td>49/6 ± 0/4</td>
<td>105/6 ± 0/2/4 105/6/1/4</td>
<td>60/6 ± 0/7/8</td>
<td>دوره (2)</td>
<td></td>
</tr>
<tr>
<td>49/6 ± 0/4</td>
<td>105/6 ± 0/2/4 105/6/1/4</td>
<td>60/6 ± 0/7/8</td>
<td>دوره (3)</td>
<td></td>
</tr>
</tbody>
</table>

داخل تیمارها و دوره‌ها هر دو در حاصل یک حرف مشابه از نظر امکان تفاوت معنی‌داری ندارند (p>0/05).

قرار نمی‌گیرد. نتایج بدست‌آمده در مورد اثر زمان بر صفات کمی از جمله وزن تخم‌مرغ در گزارش بار و همکاران (8) جری و همکاران (17) و شیلا و همکاران (21) را نشان می‌دهند. در تعدادی مورد بر خاطر کاهش درصد تولید تخم‌مرغ از یک طرف و افزایش میزان مصرف غذای از طرف دیگر در نتیجه سبب شدن وزن بدن، وزن تخم‌مرغ افزایش یافته است. در مورد اثر زمان بر دیدگار تولید تخم در نتیجه گزارش بار و همکاران (9) جری و همکاران (17) شیلا و همکاران (21) را نشان می‌دهد. پیوندی بین صفات تولیدی تحت تأثیر سطح کلسیم یا فسفر جیره قرار نمی‌گیرد. از این گروه می‌توان چنین نتیجه گرفت که نمونه‌های کلسیم فسفات نیز چون معنی‌دار کننده کلسیم و فسفر جیره بودند از این فاکتور مفیدی بودند. رامرو و همکاران (22) نتایج تولید در میزان مصرف خوراک متغیر فسفات را مقدار عناصر سرم وجود دارد آنها از سیستم‌های گذارانی انجام دادند. گزارش کردند که ضریب تبدیل خوراک تحت تأثیر معنی‌دار تغییر نمی‌گیرد.

به‌هیچ‌یکی از پژوهش‌های بررسی کلسیم برابر با ۱/۲۳ و بالاترین ضریب تبدیل مربوط به تیمار A با ۱/۲۳ و بالاترین ضریب تبدیل مربوط به تیمار G با متوسط ۲/۲۷ کروم غذا به ازای هر گرم تولید تخم‌مرغ بود.

اثر دوره‌های متغیر در تولید تخم‌مرغ، مصرف خوراک و باده تخم‌مرغ معنی‌دار شد. اما بر ضریب تبدیل خوراک اثر معنی‌داری نداشته‌بودند (p<0/05). بار و همکاران (8) مشابه همین نتایج را گزارش کردند که صفات تولیدی تحت تأثیر سطح کلسیم یا فسفر جیره قرار نمی‌گیرد. از این گروه می‌توان چنین نتیجه گرفت که نمونه‌های کلسیم فسفات نیز چون معنی‌دار کننده کلسیم و فسفر جیره بودند از این فاکتور مفیدی بودند. رامرو و همکاران (22) نتایج تولید در میزان مصرف خوراک متغیر فسفات را مقدار عناصر سرم وجود دارد آنها از سیستم‌های گذارانی انجام دادند. گزارش کردند که ضریب تبدیل خوراک تحت تأثیر معنی‌دار تغییر نمی‌گیرد.
جدول 2. تأثیر دیگر کلیسم فسفات‌های مختلف بر خصوصیات استخوان درشتی

<table>
<thead>
<tr>
<th>کلیسم استخوان</th>
<th>فسفر استخوان (درس)</th>
<th>خاکستر استخوان (درس)</th>
<th>تیمارها</th>
</tr>
</thead>
<tbody>
<tr>
<td>358 ± 0.36b</td>
<td>8/6 ± 0/14</td>
<td>6/6 ± 0/10</td>
<td>A</td>
</tr>
<tr>
<td>358 ± 0.31b</td>
<td>8/9 ± 0/30</td>
<td>6/9 ± 0/25</td>
<td>B</td>
</tr>
<tr>
<td>37/9 ± 0.33b</td>
<td>8/0 ± 0/32</td>
<td>5/0 ± 0/26</td>
<td>C</td>
</tr>
<tr>
<td>33/9 ± 0/36b</td>
<td>8/1 ± 0/38</td>
<td>5/5 ± 0/40</td>
<td>D</td>
</tr>
<tr>
<td>359 ± 0/27b</td>
<td>9/1 ± 0/37</td>
<td>5/7 ± 0/43</td>
<td>E</td>
</tr>
<tr>
<td>379 ± 0/25b</td>
<td>9/1 ± 0/37</td>
<td>5/3 ± 0/47</td>
<td>F</td>
</tr>
<tr>
<td>378 ± 0/15b</td>
<td>9/1 ± 0/37</td>
<td>5/1 ± 0/41</td>
<td>G</td>
</tr>
<tr>
<td>378 ± 0/16b</td>
<td>9/1 ± 0/37</td>
<td>5/0 ± 0/40</td>
<td>H</td>
</tr>
</tbody>
</table>

در سه سال از کلاسیفیکاسیون درشتی متغیر از نظر آماری تفاوت معنی‌داری نداشتند (P<0.05).

عملکرد بیشتر می‌باشد، دلیل آن را کاهش درصد جزئی بیشتر عضلانی، در نتیجه در دسترس قرار گرفتن عضلانی به‌وجود آن دردکننده، با توجه به این که میزان کلیسم، کلیسم یا فسفر استخوان درشتی نشان دهنده وضعیت مغز از لحاظ تعادل کلیسم یا فسفر است، نا زمانی که مغز از لحاظ تأمین کلیسم از طریق جریه با مشکل روبه‌رو نشود. میزان کلیسم استخوان در طی دوره‌های مغز در حال تشکیل پوسته ناپذیر و جابهجا‌ی می‌شود و در نتیجه میزان کلیسم استخوان تابه‌زدایی می‌باید. اما اگر مغز برای تأمین کلیسم مورد نیاز از طریق جریه با مشکل روبه‌رو بود، به ذخات استخوانی رودی می‌آورد و با آزادسازی کلیسم از طریق استخوان سرعی در جریان این کم‌بود می‌کند. پس از مدتی ذخایر استخوانی هم کم شده و مغز تولید خون را کاهش می‌دهد (۳۳).

تأثیر در کلار هم باعث شده که اگر انتی ناشی از سن مگز بر ضرب خون‌ها و جوید ناشی از افزایش میزان فسفر درصد تولید کاهش می‌باشد. از طرف دیگر وزن تخم‌مرغ تولیدی افزایش می‌یابد. بلندی که وزن تخم‌مرغ اثر بیشتری دارد. پس از افزایش سن مغز پاده تخم‌مرغ کاهش می‌یابد که مؤثر با تابیت بیولوژیک و همکاران (۱۰) یافته شد.

نمونه‌های مختلف آزمایشی از لحاظ درصد کلیسم و کلیسم استخوان تفاوت معنی‌داری (P<0.05) مشاهده شد. اما اختلاف بین تیمارها از لحاظ فسفر استخوان درشتی معنی‌دار نبود. بیشترین درصد خاکستر مربوط به تیمار F به متوسط 79/9 درصد و کمترین مربوط به تیمار B به متوسط 69/13 درصد است. درصدی استخوان بود. بیشترین درصد فسفر استخوان مربوط به G به متوسط 80/8 درصد و کمترین مربوط به تیمار B به متوسط 78/7 درصد بود. بالاترین درصد کلیسم استخوان مربوط به تیمار F به متوسط 79/9 درصد و کمترین آن مربوط به تیمار A به میانگین 56/5 درصد بود. برخی و همکاران (11) مشاهده نشده‌اند. چنین گزارش شد است که با افزایش اندازه درشت منابع فسفات، به‌خصوص در جیره‌هایی که از لحاظ کلیسم و فسفر در حد موزی‌های نسبی.
نتیجه گیری

بین صفات کیفی یکی خصوصی و صفات تولیدی ممکن است دارند. خاصی که به پاسخ مشخص کننده یک بهره بهتر باشد و وجود داشته باشد. بین دوره‌های آزمایشی روند مشخصی از لحاظ صفات کیفی و صفات تولیدی متغیر وجود داشت. بین این موارد که در دوره اول نسبت به بیوه دورها وضعیت بهتری داشتند، ارژش بیولوژیکی نمونه‌های H و G F E D C B (ارزش بیولوژیکی نمونه‌های استاندارد) درصد فرض شده است. لیما و همکاران (2005) ارزش بیولوژیکی مستقل مختلف در کلیسم صفات را از 08 تا 00 درصد گزارش کردند. این محققین علت تفاوت در ارزش بیولوژیکی نمونه‌های مختلف را در فرم شیمیایی صفات موجود در هر نمونه دانستند. نسبت میزان و دیگر کلیسم صفات موجود در هر نمونه مشخص کننده فرم شیمیایی صفات موجود در هر نمونه می‌باشد. درصد بیولوژیکی نمونه و دیگر کلیسم صفات قابلیت جذب بالاتری دارد. به دلیل داشتن محصولات صفات در آب، اسیدکسیرک و استرکردریک میزان ارزش بیولوژیکی آن منبع افزایش می‌یابد (20). هم یک به عنوان یک نمونه بهتر و برتر قابل معرفی است.

 собираگرا

به دو روش از کلیه استاندارد محتمل گروه علمی دانشکده کشاورزی دانشگاه صنعتی اصفهان، نشکر و فردیزاده می‌شد. همین‌طور در بررسی آزمایشگاه و همکلاسی‌های عزیزم که به‌هر نحو می‌تواند به انجام این تحقیق نیاز دارند کمال تقدیر و تشکر را دارم.
منابع مورد استفاده
1. استاندارد ملی ایران. 1378. شماره 7253: دی کلسیم فسفات، ویگنگی و روش‌های آزمون.
2. ایرونتی، ج. 1377. مقایسه ارزش بیولوژیکی دی کلسیم فسفات‌های داخالتی و وارداتی و ارزیابی آنها بر گوشت پوسته تخم‌مرغ.
پایان نامه کارشناسی ارشد علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران.
4. رسولی، س. 1373. تحقیق مواد معدنی در غذای دام و طیور نشریه شماره 2. مرکز تحقیقات صنعتی گاز.
5. صفی‌آبادی نمایری. 1388. تغییر ارزش بیولوژیکی دی کلسیم فسفات‌های ساخت داخالتی و مقایسه آن با نمونه وارداتی به روش تغذیه در جوجه‌های گوشتی. پایان نامه دکتری دامپرورشکی، دانشکده دامپرورشکی، دانشگاه تهران.
Poult. Sci. 69: 113- 118.
34. Rama Rao, S. V. and V. Rama subba-Reddy. 2001. Utilization of different phosphorous sources in relation to their
requirements for laying hens by response surface methodology Poult. Sci. 65: 964.
41. Sheila, E. and L. S. Jerry. 1986. Effects of calcium and phase- feeding phosphorous on production traits and
phosphate with their solubility in water dilute hydrogen chloride, dilute citric acid and neutral ammonium citrate.