بررسی نوع‌تکیه‌ای لایه‌های سویا با استفاده از روش الکتروفوروز پروتئین دانه

حمید علی‌پور، علی‌محمدی رضایی، سیدعلی محمد میرمحمدی میبدی و مسعود طاهری

چکیده
این پژوهش به منظور بررسی نوع‌تکیه‌ای ۲۷۰ زنوتیپ سویا، از نظر الگوهای الکتروفورزیک پروتئین دانه، و ارتباط آنها با برخی از ویژگی‌های دانه مانند درصد روغن، درصد پروتئین، برخی از ترکیبات شیمیایی و وزن صدف دانه انجام شد. از نظر الگوهای الکتروفورزیک، خلف‌زدایی ۱۰ و ۱/۵ درصد اکریلامید به ترتیب یک زنوتیپ اصلی و پایه، خلف‌زدایی ۲/۵ و ۱/۵ میکرولیتر تریپل نمونه در داخل چهار زنوتیپ دانه، نیز ۲/۵ میکرولیتر در رنگ‌آمیزی، مناسب ترین تلفیق برای به‌دست آوردن نوارهای واضح و جداگانه پروتئینی تشخیص داده شد. نتایج الکتروفورز پروتئین‌ها، ۳۰ نوار را بر مبنای حاصل از روش لز آشکار ساخت، که تناها بخش هدف از آنها در میان زنوتیپ‌ها چند روش دانه ندارند. به طور کلی، حاصل الگوهای متوازن الکتروفورزیک در میان زنوتیپ‌ها تشخیص داده شد. تجزیه خریداری‌های زنوتیپ‌ها بر اساس پارامترهای کیفی نوارهایی که چند شکل دانه دادند آنها را در هشت گروه، و تجزیه خریداری‌های نوارهای متغیر در زنوتیپ‌ها آنها را در سه گروه جداگانه دسته‌بندی کرد. ضریب تفاوت ساده میان نوارهای با حاصل‌کننده ۴/۵ و ۲/۵ درصد برای صفر بود، که نشانگر عدم ظهور هم‌زمان این دو نوع با هم می‌باشد. احتمال است آن نوارها توسط یک زن تکنیک متفاوت در در نوارهای اهمیت گرفت. از زنوتیپ‌های دسته‌گرگیزت غالب و مقیاس‌بندی موفقیت موفقیت‌الافا را روی زن پایاد می‌کنند. اختلاف میان الگوهای پروتئینی از نظر درصد پروتئین و درصد روغن دانه مهم‌تر از دیگر فاکتورهای پروتئینی اثربخش در زنوتیپ‌ها و صفات مورد بررسی نشان داده که نوارهایی پروتئینی با حاصل‌کننده ۴/۵ و ۲/۵ درصد به ترتیب دارای سبکی و میان‌بردارا با درصد پروتئین و سکر دانه می‌باشند. زنوتیپ‌های الگوهای پروتئینی دارای نوار با حاصل‌کننده ۴/۵ درصد، بهترین درصد فسفر دانه را داشتند. رنگ تانه دانه زنوتیپ‌های حاوی نوار پروتئینی با حاصل‌کننده ۲۵ درصد سه‌ی بود.

واژه‌های کلیدی: تجزیه خریداری، ترکیب شیمیایی دانه، ذرات پلاسم، همبستگی صفات

مقدمه
اندیشمند استفاده از فعالیت‌های کاتالیزوری آزمایش که با روشهای یکپارچه می‌توان به رفع مشکل نشاگرهای زنوتیکی از طریق

روشهای دیگر تجزیه و تحلیل زنوتیکی که در آنها مستقیماً از

۱. به ترتیب دانشجویان ساکی اندیشه تحت‌البرونکی ارتباط استاد و استادان دانشگاه ایران، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
۲. بی‌ای‌اسیا دانشگاه‌های نوروز، دانشگاه کشاورزی، دانشگاه شهید باهنر کرمان

۸۵
ماده زنیتیکی (DNA) استفاده می‌شود، یپوره‌ها ی پس‌سیار ارزشمندی در زمینه‌های گوانگوکن، از جمله ارتباطات فیلوژنتیکی و تکامل (34)، چگونگی روند زایمان گیاهان و پرسی نژاد زنیتیکی (71، 19) تغییر تشکیل پیوستگی و ازته‌نگاره‌های پرورشی با زنیتیکی مقاومت نسبت به آفات و پیمان‌ها و هم ارتباطات نزدیک‌کردن میان این گروه به صفات گیاهان (50 و 12) به انجام ریسه‌ها و یا برخی از انجام سخت‌بندی و جدایی‌گری به منظور نیروی و گروه‌بندی کردن نسبت به تشکیل عملکردی پویا در جاده‌ها و شناسایی کننده سه اعمال در میان زرم‌پلاسم موجود از جایگاه و پرندگان. از ازک گولدیلیمید در حضور سدیم دودسیل سولفات در تشخیص ویروس‌ها و طبقه‌بندی درون گونه‌ها و میان‌گونه‌ها محصولات گوانگون مهجن به دلیل استفاده در انجام سال مانیوژ و پرژیلیسکا (188) آلومین کلی دانه‌ها در چندگونه نخود با روش الکتروفورز مقداری کردن و تحقیجه گوشت که جنس سیر به خاطر الکتریتری مبتنی به پیک طالبی جداگانه تنها می‌تواند یکی از پرورشی‌های داخل نخود رنگ‌بندی یا جاده‌دایره نمودند. از این سه بخش دو گولپولین به تمام و پنلین و اگرمه‌های نامیده شدن، و در بخشی از آلومین‌ها ی بوده که کلمه نام‌آوریاری گردیده است و میلند و همکاران (13) نیز جزء گولپولین را از لحیات باتلاق جاده‌داری کرده به این پوشش گی جزه به که نسبت به یک کمی داشته از پوپیترینیات با وزن مولکولی سبک است و منش گیپولاسیمی دارد. در جزء دیگر دارای وزن مولکولی سنگین و منتوست به و به ترتیب نیکولیس و پنلین می‌باشد. گولدیلیمید و همکاران (5) به این نتیجه رسیده که وجود دو کردنی در باتلاق با نتایج تفاوت در الکتروفورزی پوپیترین‌های دانه‌های یک عکس غلاف، و غلاف‌ها و
گوناگون تشکیل شده است. هر یک از این زروارها شامل یک پایه پیچیده است که هنوز مورد بررسی قرار نگرفته است. وزن سیالکوفیزیوی به یک پایه پیچیده متصل است. وزن سیالکوفیزیوی زیر واحد هم‌زمان با زیر واحد متقابل از 0.18 و 0.18 هزار می‌باشد. با زدن سیالکوفیزیوی بین 27 تا 75 هزار می‌باشد. گلاسیمین و بی‌اکریلومید هر دو هزون‌های اسمی می‌باشند، این هزون‌ها ناشی از تغییراتی است که به همراه بهبود و در ترجمه روی سیالکوفیزیوی اولیه اتفاق می‌افتد.

با توجه به مطالعه یاد شده، این پژوهش به موجب پروسیتون‌های سیالکوفیزیوی و پروتئین‌های دانه طراحی گردید. که مهم‌ترین اهداف آن به شرح زیر می‌باشد:

ا) به دست آوردن روش عاملی مناسب برای مشاهده نوارهای واضح و مجزای پروتئین.

ب) تعیین نوارهای پروتئینی آشکار شده و قرار گیری آنها در سیالکوفیزیوی کربن.

ج) برنامه ارتقاء احتمال میان برخی از ترکیبات دانه و نوارهای پروتئینی دانه.

مواد و روش

بزنی‌پهلوی مورد بررسی شامل 500 لینی‌دهی و خارجی سیالکوفیزیوی، به هنرده از الکساندریان مؤسسی اصل و هنرهای نهال و برخی کمک به در آن پژوهش از سیالکوفیزیوی در حضور سید محمد سیالکوفیزیوی که به منظور بررسی پروتئین و کول و پروتئین‌های خاص استفاده شد. آنها در زیر شرح داده یا مشورتی به هنرده ای است که با بررسی علت پریده‌ها و سیالکوفیزیوی کربن و با استخراج پروتئین، مقایسه منفعت ترید عصاره در چاکه، مدت زمانی ریختن آن‌ها و آمورحی مختل حاصل شده است.

برای ساختن 15 دصرد اکریلومید در بررسی کل

AV
متغیرهای کششی و مالایی/بچه پنجم/شماره پنجم/ئیستگاه 1380

بررسی پروتئین‌های خاص، برای تهیه محلول‌های ملامتی، میلی‌گرم مول‌سازی 250 میلی‌لیتر اتانول، محلول گرم TCA (3/5 کارگردان استیک) در 1/5 میلی‌لیتر آب مقتصر و TCA 47/5 میلی‌لیتر استیک است، و برای رنگ‌دانی محلول گرم TCA در یک میلی‌لیتر آب مقتصر به کار رفته. پس از پریمینه شدن TCA و نگهداری از هر میوه 10 میکروولتر با میکروپیپت به داخل چاه‌ها تزریق گردید.

سناتورف ضد پروتئین‌های کل استخراج و در دمای ۲۰۰ درجه سانتی‌گراد تهیه می‌شوند. برای ساختن نمونه با دوار ۱۰۰ rpm ۱۰۰۰ میلی‌گرم آب در یک میلی‌لیتر محلول استخراج (۸ میلی‌لیتر آب مقتصر، ۳/۵ میلی‌لیتر پاپ فیلتر تغییر شده و ۴ میلی‌لیتر ۲-مکاپتیوانول) به مدت یک ساعت دهنده به‌صورت دو میلی‌لیتر گلسول به آن اضافه گردید. درجه سانتی‌گراد مربوط‌کننده بوده و برای تهیه پریمینه، ۱۸-۰ میلی‌لیتر با تغییر تریس با pH=8/5 مهره با شش گرم SDS و ۲۵ میلی‌گرم کوماسیلوس بلوه در حیات، و سپس ۳۰ میلی‌لیتر گلسول به آن اضافه گردید.

برای این که حکمت پروتئین‌ها در داخل ZL مشخص باشد، نخست پروتئین‌های استخراج شده سنگین و رنگ‌آمیزی شده باید منظور از ۰/۳ درصد پودر آبی بروموفیل در محلول تریس اسید کاربریدن ۶۵۰ مولار با pH=8/5 درصد گلسول و دو درصد بروموفیل سولفات (گلسول) و سدیم برومید گلسول به ترتیب سنگین کننده محلول و تخریب کننده پروتئین‌ها می‌باشد) و سپس های ۱/۵۰ میکروولتر از محلول رنگ‌دان یا ۲-مکاپتیوانول ۲/۵۰ میکروولتر از محلول رنگ‌دان یا ۲-مکاپتیوانول ۲/۵۰ میکروولتر از محلول رنگ‌دان یا ۲-مکاپتیوانول ۲/۵۰ میکروولتر از محلول رنگ‌دان یا ۲-مکاپتیوانول گلسول به آن اضافه گردید.

بررسی یونوی زننیکی لا اینهای سویا با استفاده از روش الکتروفورز پروتئین دانه

به‌پیشگویی میان صفات، و میان الگوهای پروتئینی و صفات گوناگون محاسبه گردید.

نتایج و بحث
روش عملی مناسب الکتروفوروز
نتایج نشان داد که ژنتیک الگوهای مختلف بررسی شده، غلظت‌های ۱۰/۰ و ۱۵/۰ درصد آکرولاید به ترتیب برای زلی‌های اصلی و پایه، غلظت‌های ۱۰/۰ میلی‌گرم در میلی‌لیتر یافته استخراج عصاره پروتئینی، ۱۰ میکروولت تزریق نمونه دارای داخل چاکه‌های زلی با دو میلی‌آمپر، و دو ساعت رنگ آمیزی، مناطقی تلیف برای به دست آوردن نوارهای واضح و جدایگان پروتئینی بیشتر، گلیسینین و پتنت‌پالاکسین‌های که از پروتئین‌ها اصلی تشکیل شده‌ند، سایر ژنتیکی هر کدام از جنین‌های پروتئین دانه تکثیر می‌شود یا جزئیات مشخص طراحی شده‌اند. با توجه به چنین پیش‌بینی‌هایی این بیشتر و تعداد زیست‌های دهانهٔ دهنده آنها، حکمت و جداسازی آنها از داخل ذل احتیاج به منابع نیازی برای یک دارد. انتخاب در پایه با غلظت ۵/۰ درصد و ذل غلظت ۱۰ درصد، باعث شده که ابعاد پروتئینی‌ها با در نظر گرفتن ذل مناسب گردد و به خوبی در ول اصلی حکمت کنستا و هم جماشوند. از آن جایی که در حبوبات سویا بیشتر مقدار پروتئین‌های در حدود ۲/۰ درصد (را داری یا بیشتر) از ذل رفت نوارهای پروتئینی که با فرآیند می‌شود، انتخاب غلظت عصاره پروتئینی (۲/۰ میلی‌لیتر) و میزان نموده به ترتیب دخالت چاکه‌های زلی (۱/۰ میکروولت) از ذل رفت نوارهای پروتئینی که مشخص کنیم تی‌رین نوارهای واضح و جدایگان گلیسینین نمود، و امکان حصول نوارهای واضح و جدایگان پروتئین را فراهم ساخت.

تنوع الگوهای پروتئین دانه الکتروفورز پروتئینی‌ها روی ۱۵۰ نوارهای مورد بررسی شمار بسیار نوار روی ذل آشکار ساخت. شمار نوارهای اصلی که
جدول ۱. انگل‌های متفاوت زئوتیپ‌ها از نظر نوار پروتئینی و فراوانی آنها

<table>
<thead>
<tr>
<th>نوار نسبی نوار (RF)</th>
<th>نوع نوار (R)</th>
<th>فراوانی</th>
<th>نوار</th>
<th>نوار</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/5</td>
<td>1</td>
<td>52</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>18/5</td>
<td>2</td>
<td>46</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5/4</td>
<td>3</td>
<td>26</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>19/5</td>
<td>4</td>
<td>21</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8/8</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

ضروب تطابق ساده ۱/۵ در میان نوارهای ۱۸، ۲۰ و ۲۲ می‌تواند عامل این تکه باشد که این سه نوار تقریباً در دو مورد زئوتیپ‌ها با هم Morse. ضروب تطابق ساده میان نوارهای ۱ و ۲۰ این دارای صفر بوده، که نشان دهنده عدم ظهور همزمان این دو نوار با هم است، بنابراین این نوار که زئوتیپ خاصی به این دو نوار از هم مستقل هستند، و در صورت پوشش بودن میزان زئوتیپ‌های میان آنها ۱۵ درصد است، البته در صورتی که پوشش صدق است و ضروب تطابق ساده میان این دو نوار به مقدار ۴ می‌کند که سلول تحت احتمال گم‌گرفتن نورتیپ‌ها وجود یافته یا یا دیگر نیاز به هر دو زئوتیپ به این دو نوار می‌باشد. از این رو، می‌توان گفت که این دو نوار مهاجم پروتئینی یکنواخت، که در حالت همزیستی سیال و مغلوب به صورت یک نوار متغیری می‌شوند. توجهی دوم در ارتباط میان این دو نوار متغیری ته نظر می‌رسد.

![نمودار](https://www.example.com/image.png)

شکل ۱. موقعیت نوارهای پروتئینی و حزکت نسبی آنها

سه گروه متفاوت را از فاصله ۲/۵ تا ۰/۲۵ و نیم‌ایان ساخت. گروه یک متعلق به نوار ۱۰ گروه ۲ متعلق به نوارهای ۱۸، ۲۰ و ۲۲، و گروه ۳ متعلق به نوار ۲۱ است. با توجه به اینکه نوارهای ۱۲ و ۲۰ در بیشتر زئوتیپ‌ها وجود دارند، ضروب تطابق ساده میان آنها ۲/۵ است. می‌توان گفت که که این دو نوار از هم مستقل نیستند. زیادی بوده و احتمالاً زئوتیپ‌های مربوط به آنها در پشتیبانی متوسطی می‌باشد، به طوری که در بیشتر زئوتیپ‌ها ظهور یکی همراه با ظهور دیگری و عدم ظهور یکی با عدم ظهور دیگری همراه است.
مقایسه الگوهای پروتئینی از نظر برخی ویژگی‌های دانه

<table>
<thead>
<tr>
<th>شماره نوار</th>
<th>حركت نسبی نوارها</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2/5</td>
</tr>
<tr>
<td>2</td>
<td>2/5</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>18/5</td>
</tr>
<tr>
<td>7</td>
<td>18/5</td>
</tr>
<tr>
<td>8</td>
<td>20/5</td>
</tr>
<tr>
<td>9</td>
<td>22/5</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>11</td>
<td>26</td>
</tr>
<tr>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>14</td>
<td>32/5</td>
</tr>
<tr>
<td>15</td>
<td>35/5</td>
</tr>
<tr>
<td>16</td>
<td>41/5</td>
</tr>
<tr>
<td>17</td>
<td>34</td>
</tr>
<tr>
<td>18</td>
<td>46</td>
</tr>
<tr>
<td>19</td>
<td>48</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>21</td>
<td>52</td>
</tr>
<tr>
<td>22</td>
<td>56</td>
</tr>
<tr>
<td>23</td>
<td>61/5</td>
</tr>
<tr>
<td>24</td>
<td>67</td>
</tr>
<tr>
<td>25</td>
<td>73/5</td>
</tr>
<tr>
<td>26</td>
<td>76</td>
</tr>
<tr>
<td>27</td>
<td>80</td>
</tr>
<tr>
<td>28</td>
<td>82</td>
</tr>
<tr>
<td>29</td>
<td>89</td>
</tr>
<tr>
<td>30</td>
<td>99</td>
</tr>
</tbody>
</table>

نقیه واریانس الگوهای پروتئینی از نظر صفات مورد بررسی در جدول 2 نشان داده شده است. نتایج مشخص نشان می‌دهد که اختلاف میان الگوهای پروتئینی از نظر وزن صدای دانه معنی‌دار است. مقایسه میانگین‌های وزن صدای دانه در الگوهای مختلف نشان داد که الگوهای 4 و 8 دارای اختلاف معنی‌داری با یکدیگر نبودند. ولی تفاوت آنها با دیگر الگوها معنی‌دار نبود. اختلاف میانگین‌های وزن صدای دانه الگوها 4 و 1 از آن جا ناشی می‌شود که الگوی نوع 4 تناک الگوی است که فقط دارای دو نوار پروتئین با حركت نسبی 2/5 و 46 درصد از میان پنج نوار متغیر در دسته‌ها می‌باشد. در غیر این حالت بیشترین وزن صدای دانه را دارد. یا توجه به ارتباط قوی الگوی نوع 4 و وزن صدای دانه، و از آن جایی که وزن صدای دانه معنی‌دار می‌باشد و اهمیتی در عملکرد دانه است، انتخاب بر اساس الگوی پروتئینی نوع 4 در مراحل اولیه به‌نظر می‌رسد. در نکته‌گیری‌های پیش‌گویند مؤلف واقع شد. اختلاف الگوهای پروتئینی از نظر درصد کلسیم درصد گودر و درصد ماده خشک دانه معنی‌دار نبوده، ولی الگوی نوع 4 که بیشترین درصد ماده خشک را داشت کمترین درصد پروتئین داشت و دارای بود. این موضوع با بیشتره معکوس می‌باشد که در دسته و درصد پروتئین دانه را تأیید می‌کند. اختلاف الگوها از نظر درصد فسفر بی‌مغز معنی‌دار نبود. الگوی نوع 4 کمترین درصد فسفر داشت و دارای بود. با توجه به این که الگوی نوع 4 دارای کمترین میزان پروتئین در بین الگوها می‌باشد، در ساختمان برخی از پروتئین‌ها و آنزیم‌ها، مانند سیتوکروم C، فسفر وجود دارد که بودن درصد فسفر دسته‌های دارای این الگوی پروتئین قابل اننگ‌نظر است.

شکل 2. شماره‌گذاری نوارهای پروتئینی
جدول ۲. مقایسه تعداد گونه‌های الکتروفورتیک برای صفت‌گروگان و مقایسه میانگین‌های الگوها

<table>
<thead>
<tr>
<th>صفت</th>
<th>میانگین مرعیات ۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
</tr>
</thead>
<tbody>
<tr>
<td>الگوها</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>وزن صد دانه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درصد ماده خشک</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درصد پروتئین دانه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درصد گوگرد دانه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درصد فسفر دانه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درصد روغن دانه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درصد کلسیم دانه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* برای هر صفت میانگین‌های هر دانه جای خورش منشیه دانه، بر منیای نیانگین‌های جداکلی مرعیات، در سطح احتمال پنج درصد قابل تفاوت می‌باشند.
** به ترتیب میانگین دار در سطح احتمال ۵ و ۱ درصد.

سیمیتری پروتئینی داره‌ها

این نمونه‌ها از نظر درصد روغن با دست می‌دارد، به گونه‌ها که پروتئین‌های دارای الگوهای نوع ۲ پیشترین میزان روغن را داشته‌اند. از سوی دیگر الگوهای نوع ۲ ترکیب الگوهای است که درصد نوارهای پروتئینی با حالت ترکیب از ۸۰/۵ و

** اختلاف الگوهای از نظر درصد پروتئین دانه، می‌باشد.

به طوری که الگوهای ۲۳ و ۳۴ دارای بافتکنارترین پروتئین پروتئین به دلیل نمودار داره‌ها، این نمونه‌ها از نظر درصد الگوهای نوع ۸۰/۵ و ۱۸ دارای بافتکنارترین پروتئین پروتئین به دلیل هر دانه است که در این مورد بحث قرار می‌گیرد.

جدول ۳. ضرایب همبستگی میان ویژگی‌های دانه

<table>
<thead>
<tr>
<th>مواد خشک</th>
<th>پروتئین</th>
<th>گلیسرین</th>
<th>فسفر</th>
<th>روغن</th>
<th>وزن صد دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماده خشک</td>
<td>0/68</td>
<td>0/17</td>
<td>0/21</td>
<td>0/07</td>
<td>0/05</td>
</tr>
<tr>
<td>پروتئین</td>
<td>0/13</td>
<td>0/07</td>
<td>0/39</td>
<td>0/20</td>
<td>0/02</td>
</tr>
<tr>
<td>گلیسرین</td>
<td>0/29</td>
<td>0/16</td>
<td>0/05</td>
<td>0/34</td>
<td>0/05</td>
</tr>
<tr>
<td>فسفر</td>
<td>0/56</td>
<td>0/36</td>
<td>0/02</td>
<td>0/19</td>
<td>0/03</td>
</tr>
<tr>
<td>روغن</td>
<td>0/58</td>
<td>0/23</td>
<td>0/06</td>
<td>0/09</td>
<td>0/02</td>
</tr>
<tr>
<td>کلیسیم</td>
<td>0/35</td>
<td>0/22</td>
<td>0/05</td>
<td>0/07</td>
<td>0/05</td>
</tr>
</tbody>
</table>

** و ** : به ترتیب معنی‌دار در سطوح احتمال ۵ و ۱ درصد.

جدول ۴. همبستگی نوارهای پروتئینی منگر در ژوتیپ‌ها و ویژگی‌های دانه

<table>
<thead>
<tr>
<th>RF</th>
<th>وزن صد دانه</th>
<th>صفات</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۲</td>
<td>۰/۶۷</td>
<td>۰/۶۷</td>
</tr>
<tr>
<td>۴۹/۵</td>
<td>۰/۵۴</td>
<td>۰/۶۹</td>
</tr>
<tr>
<td>۴۶</td>
<td>۰/۷۵</td>
<td>۰/۷۵</td>
</tr>
<tr>
<td>۳/۵</td>
<td>۰/۵۴</td>
<td>۰/۵۴</td>
</tr>
<tr>
<td>۲/۵</td>
<td>۰/۵۴</td>
<td>۰/۵۴</td>
</tr>
</tbody>
</table>

** و ** : به ترتیب معنی‌دار در سطوح احتمال ۵ و ۱ درصد.

منطقی به نظر می‌رسد. از سویی، افزایش وزن صد دانه، غلظت پروتئین این عنصر را در دانه کاهش داده و معنی‌دار است. درصد آنکه می‌شود. ارتباط میان پیش‌صرفات و نوارهای پروتئینی کم و غیر مشخص است. مرزهای بود (جدول ۴)، ولی ارتباطات جالب و معنی‌دار در میان آن‌ها به چشم می‌خورد. همبستگی معنی‌دار نوارهای پروتئینی با حرکت نسبی ۰/۵ درصد به همبستگی میان صفات (جدول ۴) نشان داد که با افزایش درصد فسفر در دانه کاهش داشته درصد پروتئین کاهش می‌یابد. افزایش رابطه از پروتئین را در واقع وزن کرده و نهایتاً درصد پروتئین کاهش می‌یابد. همبستگی وزن صد دانه و درصد فسفر دانه در سطح احتمال ۵ درصد معنی‌دار بود. با توجه به این که فسفر نسبت به دیگر عنصر معنی‌دار (کلیسیم، گلیسرین) به میزان زیادی توسط گیاه جای می‌شود و از عنصر ضروری برای رشد گیاه می‌باشد، بنابراین معنی‌دار بودن این همبستگی
تمامی این الهوگا ها در نوار پروتئینی با حرف نسبی 3/5 درصد می باشند. بنا بر این ارتباط قوی میان درصد پروتئین دانه و نوار 3/5 درصد مورد تایید قرار می گیرد. انتخاب بر اساس الگوهای پروتئینی حاوی این نوار می تواند در گروه مشابه گاهی با درصد بالایی پروتئین بر مورد واقع شود.

هیپستگی درصد فسفر دانه و نوارهای پروتئینی با حرف نسبی 2/5 و 1/5 درصد (24/5/0) در سطح احتمال یک درصد معنی دار بود. الگوهای پروتئینی در و 8 با داشتن نوار با مراجعه مورد استفاده

1. ولی زاده، م. و. ت. کامیا. ۱۳۸۲. فاصله زنتیکی بین گونه های بروکسل سپتیشیاس و گونه های مادر مورد استفاده از پروسه چند شکل های پروتئین و DNA اولین.

