بهبود سازی فرآیند تولید مالتودکترین با استفاده از آنزیم آلفا آمیلاز x

علاوه‌ا صادقی، فتحری شهیدی*، سید علی مرتقی، مهندس تصرفی محلاتی و سید حامد رضا بهشتی

(تاریخ دریافت: ۱۳۹۴/۰۸/۲۷؛ تاریخ پذیرش: ۱۳۹۴/۰۸/۲۷)

چکیده

هدف اصلی این طرح پژوهش بررسی امکان استفاده از آنزیم آلفا آمیلاز x در تولید مالتودکترین با استفاده از نشانه‌های تولید Termamyl 2-x می‌باشد. در این مطالعه، فرآیند شامل تولید مالتودکترین، واکنش مذکور در میان دتاخوت پلت انجام شد. مراحل فرآیند شامل تهیه سوپرپارنولیز شده، تنظیم pH مورد استفاده، افزایش قدرت‌های پردازشی که به دست آمده اکسیژن و دکتروز و مواد جانبی محلول، غیر فعال نمایندگان آلی بر روی مدل انرژی پدیده بر دستگیری. تولید آنزیم x از سایه‌های مالتودکترین از دستگیری و در نهایت خشک کردن محلول حاصل از سانترپوز در روی پاشینه بود. در این پژوهش، مقدار اکسیژن و دکتروز بر حسب ماده خشک، تحت تأثیر pH غلظت آنزیم x/۱۰۰ میلیلتر از هر کیلوگرم نشانه و در سه دمای متفاوت (۵۰، ۶۰ و ۷۰ درجه سانتی‌گراد) در طول زمان‌های مختلف pH، تأثیر ۶ مورد ارزیابی قرار گرفت. آنالیز آماری تأثیر حاصل در قالب بی‌کلام تصادفی، به روش فاکتوریل و در پنج تکرار صورت پذیرفت. جهت بررسی رابطه بین اکسیژن و دکتروز و عوامل مؤثر بر آن از رگ‌سنجی چندمتغیره استفاده شد. در اینجا مدل کلیه مقدار اکسیژن و دکتروز در ماه خشک بر حسب مقدار آنزیم مصرفی، دما و زمان هیدرولیز این محدوده‌ی مورد ارزیابی، ارائه گردید. تجانب حاصل نشان می‌دهد که مقدار اکسیژن و دکتروز فراورده تولیدی تحت تأثیر غلظت آنزیم x در دو دمای ۵۰/۰ و ۵۰/۵ درصد مبتنی بر آن از هر کیلوگرم نشانه و دما به همراه فراورده هیدرولیز پس از ۳۰۰ دقیقه به ترتیب ۰/۲۵ میلی‌لیتر به‌زیان ۷۵ درصد آمد. در این شرایط، کمترین میزان نشانه‌های هیدرولیز نشده و فععلیت باقی مانده آنزیم x نیز مشاهده گردید.

واژه‌های کلیدی: مالتودکترین، اکسیژن و دکتروز، هیدرولیز آنزیم‌های آلفا آمیلاز، خشک کردن پانشور

نظر یل اسیدو و همکاران(۱۴) حاوی اکسیژن‌های دیلیریژر شده هستند. گسترش وسیعی از فراورده‌های حاصل از هیدرولیز نشانه (Dextrose Equivalent) (DE) بر اساس اکسیژن و دکتروز (۱۴) نشان دهید که بر آن‌ها توصیف و نام‌گذاری می‌گردد، که بر

مقدمه

امروزه مشتقاتی اصلی شده شانه کاربردهای گسترده‌ای دارند. بر اساس اکسیژن و دکتروز (۱۴) نشان دهید که بر

۱. به ترتیب دانشجوی سابق کارشناسی ارشد، دانشجو و استاد علوم و منابع طبیعی، دانشگاه فردوسی مشهد.
۲. دانشیار زراعت، دانشگاه کشاورزی، دانشگاه فردوسی مشهد.
۳. مرکز وحدت تحقیق و توسعه شرکت صنایع غذایی کشور مشهد.
۴. fshahidi@ferdowsi.um.ac.ir

* مسئول مشارکت، پست الکترونیکی: fshahidi@ferdowsi.um.ac.ir

۳۳۳
کمتر مورد استفاده قرار می‌گیرد و عموماً این روش در تولید

اساس تعیین کروناکس (2) اصولی و همکاران (15) عبارت از مقدار احتمال کمک‌سازی مجموعه قندهای محقق بر اساس میزان گلولک وجود در ماه خشک آن می‌باشد.

مالتوکستراتین [C6H11NO5 (5)] هوا 
فاقد طعم شیرین بوده که اکسیدان دکستروز آن کمتر از 20 و شاخص مخلوطی از ترکیبات با وزن مولکولی بین پنی ساکرازه‌ها و الگوساکرازه‌های سری پروتئز اینها فرد یا
شرب‌های غلیظ در دسترس می‌باشد (6 و 13). ماده خام اصلی
که به صورت گسترده در تولید مالتوکستراتین مورد استفاده قرار می‌گیرد، نشانه‌های نشانه درست (6 و 8).

کروناکس (6) دوکسیک و همکاران (7) اظهار داشتند
مالتوکستراتین در مقایسه با نشانه، خالیت بیشتری در آب داشته، نسبت به اثر هیدروفلوریدهای خروکی آکسید و مرطوبی، اکسید و مرطوبی ویا افت و در موارد ویژه به عنوان
یک ازدیگر غذایی به دلیل ایجاد ذل، قوار، بافت، افزایش
وسیزی ویژگی‌های دامی نبوده‌است.

درمان و همکاران، خصوصیات انتقال اندیس‌های آلفا
ایمال هیدروفلورید کننده نشانه‌ها را بررسی نمودند (16). بر این
اساس عوامل برای هیدروفلورید آنزیمی نشانه‌ای اندیس‌های آلفا ایمال (1-4) انгаکسپر گلولک، گلولکرات و هیدروفلورید) تولید
توسط باسیلولاها استفاده می‌شود. نباید بر مشاهده درونمای و همکاران، آلفا ایمال در محدوده 826 
تا 65 بیشترین

هر اکسید، مقدار pH غلیظ با رابطه تشکیل
مالتوکستراتین قدرت می‌باشد. زلیه قابل پیگمنت و با حرارت تشکیل
دهن. در مالتوکستراتین می‌باشد. افزایش چگونه در حالی که با
کاهش اکسیدان و دکستروز، ویژگی‌های دیگر قابل بررسی و مانند پیشنهاد کروناکس (7) می‌باشد. در کاهش
و افزایش میزان نیز دارند و در میکرو‌کوپائوزیک ترکیبات
غذایی حساسیت به سایر مادا مثارالا از این نظر مفیدتر

هستند (1). 

امروز روش هیدروفلورید اسیدی برای تولید مالتوکستراتین
کمتر مورد استفاده قرار می‌گیرد و عموماً این روش در تولید

776
بیانیه سازی فرآیند تولید مالتودکسترین با استفاده از آنزیم آلфа امیلز x-2

فرآیندهای حاصل از هیدرولیز آنزیمی نشانه‌های برشمرده‌اند که "Saccharification" و "Liquefaction" شامل محققین فرآیند "Saccharification" و "Liquefaction" نشانه‌ها استفاده از آنزیم آلفا امیلز مربوط به یک مواد متداوم ضرورت داشته و در نتیجه آن مالتودکسترین عموماً از هیدرولیز کنترل شده آنزیمی نشانه‌ها

در اینجا انجام‌هایی در تولید مالتودکسترین (که در حال حاضر در مقایسه با نتایج مصرف ایرانی ساخته می‌باشد. این محققین فرآیند "Liquefaction" با استفاده از آنزیم آلфа امیلز مربوط به یک مواد متداوم ضرورت داشته و در نتیجه آن مالتودکسترین عموماً از هیدرولیز کنترل شده آنزیمی نشانه‌ها

مواد و روش‌ها

برای انجام این یوزه نشانه‌هایی در این شرکت مهندس‌های 70ppm دی‌اکسید کریک در 60/5/30/14 رطوبت، 14% خاصیت، 25% درجه تغییر، 1/2 تا 4/2 بهبود pH آن تا 15 درجه داشت. آنزیم آلفا امیلز Novozymes از شرکت Novozymes 2-x (Termamyl 120-L) N/KGU/g فعالیت 240 تهیه شد و از هیدرولیز سرمین 1 ترمیم، اسید کاربوزیک 5 ترمال، محلول‌ها پیدا و فهلیکس تولیدی آنان استفاده گردید.

ماد سازی کردن (8)

در تمامی موارد استفاده از آنزیم پکی از مشکلات اصلی

جستجوی اطلاعاتی از غیر فعالیت شدن آنزیم مصرفی در انتهای فرآیند است. از این رو (16) توانسته عوامل مؤثر در غیر فعالیت آنزیم آلفا امیلز در حین هیدرولیز نشانه‌ها گندم را مدل سازی نمایند. ایا و ازایک (2) تأثیر جلوگیر در غیر فعالیت آنزیم آلفا امیلز برابر سرعت زمان مدت سازی کردن. همچنین محققین مذکور عوامل مؤثر در غیر فعالیت سازی آنزیم آلفا امیلز در حین هیدرولیز نشانه‌ها و روانی نشانه‌ها در این مدلها عوامل پیچیده مؤثر بر کیتیک آنزیم و شرایط فرآیند به صورت جزئی مورد بررسی قرار گرفتند و درصد هیدرولیز نشانه‌ها و میزان فعالیت آنزیم باقی مانده، تحت تأثیر دما، سرعت هورن، زمان فرآیند، مقدار آنزیم مصرفی، و اندازه و مواد آزادی خاصی مورد بررسی قرار گرفتند.

 hvor بایستی از انجام این پروژه بررسی امکان استفاده از Termamyl 120-L جستجوی مالتودکسترین از نشانه‌های در مقایسه آزمایشگاهی و پایلوت بلند، همچنین استفاده از نتایج مذکور جهت تولید صنعتی آن در کشور بود تا

تعیین آنزیم وان دکستروز

جهت تعیین آنزیم وان دکستروز از روش اصلی شده تری‌اپسون (Corn Refiner Association (Method E-26 لبنان- آمریکا) و تعیین میزان جمع‌العمل از روز فرآکتومتری (مدل CHD15570 در دمای محیط استفاده شد.

فراز تولید

این این جهت تعیین حداکثر مقدار میزان آنزیم و نیز زمان در Termamyl 120-L جستجوی با استفاده از آنزیم آلфа امیلز 2-x میزان آزمایشگاهی شرکت گلیس مالتودکسترین (برایکس) تا 30 تا 50 از نشانه‌های در تولید گردید. سپس به کمک تایج حاصل، تولید مالتودکسترین از استفاده از آنزیم مذکور در مقياس نیمه صنعتی شد که نتایج تذکرت

نظر به این که استفاده از مقادیر معنای مصرف آنزیم آلфа امیلز 120-L جهت تولید مالتودکسترین (44) موجب گردید آن دکستروز محصول تولیدی در مقياس آزمایشگاهی کسب نتیجه مورد تعریف شد. افزایش چشم‌گیری نشان دهد (DE باین بر 50) و از آنجا که محصول تولیدی تحت

فراز تولید

این این جهت تعیین حداکثر مقدار میزان آنزیم و نیز زمان در Termamyl 120-L جستجوی با استفاده از آنزیم آلфа امیلز 2-x میزان آزمایشگاهی شرکت گلیس مالتودکسترین (برایکس) تا 30 تا 50 از نشانه‌های در تولید گردید. سپس به کمک تایج حاصل، تولید مالتودکسترین از استفاده از آنزیم مذکور در مقياس نیمه صنعتی شد که نتایج تذکرت

نظر به این که استفاده از مقادیر معنای مصرف آنزیم آلфа امیلز 120-L جهت تولید مالتودکسترین (44) موجب گردید آن دکستروز محصول تولیدی در مقياس آزمایشگاهی کسب نتیجه مورد تعریف شد. افزایش چشم‌گیری نشان دهد (DE باین بر 50) و از آنجا که محصول تولیدی تحت
تاثیر غلظت ۰.۳ آزمزمی در حذف ویروس هیپتیت C
برای نرمال‌کردن ویروس هیپتیت C و از بین بردن آنزیم وریوکانسیون چشمه‌ها، نیاز است که تأثیر غلظت ۰.۳ آزمزمی در حذف ویروس هیپتیت C در محیط‌های مختلف‌نشانه‌های فیزیولوژیکی مسئول از بین بردن آنزیم وریوکانسیون چشمه‌ها را داشته باشد.

آزمزمی در حذف ویروس هیپتیت C برای نرمال‌کردن ویروس هیپتیت C و از بین بردن آنزیم وریوکانسیون چشمه‌ها، نیاز است که تأثیر غلظت ۰.۳ آزمزمی در حذف ویروس هیپتیت C در محیط‌های مختلف‌نشانه‌های فیزیولوژیکی مسئول از بین بردن آنزیم وریوکانسیون چشمه‌ها را داشته باشد.

نتایج و بحث
معاوضات آزمزمی در حذف ویروس هیپتیت C برای نرمال‌کردن ویروس هیپتیت C و از بین بردن آنزیم وریوکانسیون چشمه‌ها، نیاز است که تأثیر غلظت ۰.۳ آزمزمی در حذف ویروس هیپتیت C در محیط‌های مختلف‌نشانه‌های فیزیولوژیکی مسئول از بین بردن آنزیم وریوکانسیون چشمه‌ها را داشته باشد.
به هیچ‌صورت تولید مالتوکسترین با استفاده از آنزیم آلфа آمیلاز x-2

1. نمودار فرآیند هیدرولیز به کار گرفته شده جهت تولید مالتوکسترین با استفاده از آنزیم آلфа آمیلاز x-2

2. افزایش بافت‌های در مدت زمانی کمتر از دماهای
3. قرار گرفتن مصرف آلфа آمیلاز x-2 جهت تولید مالتوکسترین در شرایط فرآیند ذرت شده سبب تسهیل
4. تولید مالتوکسترین در شرایط فرآیند ذرت شده سبب تسهیل
5. افزایش بافت‌های در مدت زمانی کمتر از دماهای
6. قرار گرفتن مصرف آلфа آمیلاز x-2 جهت تولید مالتوکسترین در شرایط فرآیند ذرت شده سبب تسهیل
7. افزایش بافت‌های در مدت زمانی کمتر از دماهای
8. قرار گرفتن مصرف آلфа آمیلاز x-2 جهت تولید مالتوکسترین در شرایط فرآیند ذرت شده سبب تسهیل
9. افزایش بافت‌های در مدت زمانی کمتر از دماهای
10. قرار گرفتن مصرف آلфа آمیلاز x-2 جهت تولید مالتوکسترین در شرایط فرآیند ذرت شده سبب تسهیل

Termamyl®

فلایمر و همکاران (12) مقدار آکی والان دکستروز حاصل از هیدرولیز نشانه‌های مورد نظر در دمای 100 °C تحت تأثیر 100 کیلوگرم از آنزنیم آمیلاز Termamyl® 120-L، که در طول ۲۰ دقیقه از ۵۰ تا ۷۲ درصد آب و سایر هیدرولیز تولید اکی والان دکستروز در شرایط هیدرولیز عنوان شده پس از ۲۰ دقیقه از ۵۰ بالاتر بودند و به صورت صعودی

مقدار آکی والان دکستروز حاصل از هیدرولیز نشانه‌های مورد نظر در دمای 100 °C تحت تأثیر 100 کیلوگرم از آنزنیم آمیلاز Termamyl® 120-L، که در طول ۲۰ دقیقه از ۵۰ تا ۷۲ درصد آب و سایر هیدرولیز تولید اکی والان دکستروز در شرایط هیدرولیز عنوان شده پس از ۲۰ دقیقه از ۵۰ بالاتر بودند و به صورت صعودی
جدول 1. مقایسه مقادیر میانگین اکووالان دکتروز حاصل از هیدروپلیز نشانه‌های تأثیر دما و غلظت‌های متفاوت 
از آنزیم آلفا آمیلاز Termamyl

<table>
<thead>
<tr>
<th>غلظت آنزیم مصرفی (میلی لیتر به ازای کیلوگرم نشانه)</th>
<th>دمای هیدروپلیز (سی‌سی)</th>
<th>زمان هیدروپلیز (دقیقه)</th>
<th>آکووالان دکتروز</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>60</td>
<td>1/60 ± 6/98</td>
<td>1/33 ± 5/40</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>1/65 ± 5/86</td>
<td>1/29 ± 5/98</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>1/70 ± 7/86</td>
<td>1/29 ± 5/98</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>1/75 ± 7/86</td>
<td>1/29 ± 5/98</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>1/80 ± 7/86</td>
<td>1/29 ± 5/98</td>
</tr>
<tr>
<td>2/5</td>
<td>90</td>
<td>1/90 ± 7/86</td>
<td>1/30 ± 5/86</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1/100 ± 7/86</td>
<td>1/30 ± 5/86</td>
</tr>
</tbody>
</table>

* میانگین‌های دارای حرف مشترک در هر ردیفی در سطح احتمال 5% اختلاف معنی‌داری ندارند.

به کاتالیزور و کاهش هریته فیلترباسیون اشاره نمود (۱۲). دلیل افزایش زمان هیدروپلیز (۳۰ دقیقه) در گستره دمایی ۶۰ تا ۷۰ درجه سانتی‌گراد به موجب انحراف به زیرین‌شدن نشانه‌های جلول‌گیری از افزایش ویژگی‌های ویژه حصول اطمینان از فرآیند آماده رصد کافی برای هیدروپلیز نشانه‌های صرف حمایت فعالیت آنزیم در حین فیلترینگ هیدروپلیز بود. لازم به توجه است که در این گستره دمایی امکان استفاده از پلولاناز نیز فراهم می‌آید.

برآورد میزان نشانه‌های هیدروپلیز نشانه و فعالیت باقی‌مانده (شکل ۲).
شکل ۲. روند تغییرات اکیولالان دکستروز (الف). فعالیت باقی مانده آنزیم (ب) و میزان نشاسته هیدرولیز نشده (ج) تحت تأثیر مقدار ۲/۰۰ تا ۳/۰ میلی لیتر به ازای هر کیلوگرم نشاسته ذرت از آنزیم آلفا امیلاز Termamyl. در محدوده دمایی ۶۰ تا ۹۰ درجه سانتی‌گراد پس از زمان ۳۰۰ دقیقه هیدرولیز و pH ثابت ۶.


متابع مورد استفاده


متابع مورد استفاده


