بررسی امکان استفاده از کیتوزان به عنوان یک نگهدارنده طبیعی
در سنس مايونز

حسن برزگر¹ ، احمد کریمی جلال جمالیان² ، محمدرضا امین لاری³

(تاریخ دریافت: ۸۵/۲/۲۸؛ تاریخ پذیرش: ۸۵/۷/۰۴)

چکیده
کیتوزان از مشتقات دی اسپینه شده کیتیم می‌باشد که در پورش سخت بیکرت، پنکاپان و دیواره بی‌سولو برخی از گونه‌های پاتوپات‌های می‌باشد. هدف از این تحقیق بررسی خاصیت ضد میکروبی کیتوزان و امکان کاربرد آن در سنس مايونز به عنوان یک ماده نگهدارنده طبیعی می‌باشد. In Vitro در این تحقیق به روش شیمیایی از پورش میگو کیتوزان استخراج شده و مسی قدیت ضد میکروبی کیتوزان تولیدی از آن به طریق pH استفاده گردیده است. نتایج نشان داد که سنس مايونز در pH مورد به دو گروه در دو pH ۵ به اثر رفت. در محله بعد به تأثیر خاصیت‌های pH/۱/۰ و ۳/۰ درصد کیتوزان به پاک‌تریکس (MBC) این می‌باشد که کیتوزان به مایزرین تحت شرایط مختلف pH به طور می‌باشد. این نتایج نشان داد که این می‌باشد که کیتوزان به سنس مايونز با کاهش مکانی‌داری در جمعیت

واژه‌های کلیدی: کیتوزان، کیتین، ماده نگهدارنده، سنس مايونز

مقدمه
تأمین نیازهای غذایی و نگهداری غذایی از دیر زمان مورد توجه بشر بوده‌است. گذاشته‌سپس از تولید باستیله به طریق مناسب‌کردن به شکل شوید تا در صورت دچار فساد و ضایعات خواهند شد. یکی

از روش‌های کلیدی استفاده از

ماده غذایی استفاده از

از می‌باشد. امروزه کمتر هزینه غذایی یافت می‌شود که به‌جای افزودن مواد آنزیمی در ارتقاء ترdivision. این مواد آنزیمی اگر در حذف مجاز استفاده شوند،

۱. علوم و فنون کشاورزی و منابع طبیعی / سال دوازدهم / شماره چهل و سوم (ب) / بهار ۱۳۸۷

۲. به ترتیب استادان و استادان علوم و صنایع غذا، دانشگاه کشاورزی و منابع طبیعی رامی‌ی، ملاعبی، خوزستان

۳. استاد دانشگاه دامپزشکی، دانشگاه شیراز

barzegarha@yahoo.com: * مسئول مکاتبات، پست الکترونیکی.
انگل اثر کیتیوزان در غلظت‌های کمتر از 1/5 درصد را روي Broth Nutrient گونه مختلف بیمارگرها غذازی در محیط pH و در برای 5/5 و 6/5 بررسی کرد. نتایج این تحقیق نشان داد که با افزایش غلظت کیتیوزان قدرت پاساژ‌گذاری آن در برای بیمارگرها افزایش یافته همچنین قدرت ضد میکروبی کیتیوزان از حد میانی تا بالای pH و در برای 5/5 و 6/5 بررسی کرد. نتایج این تحقیق نشان داد که با افزایش غلظت کیتیوزان قدرت پاساژ‌گذاری آن در برای بیمارگرها افزایش یافته همچنین قدرت ضد میکروبی کیتیوزان از حد میانی تا بالای pH و در برای 5/5 و 6/5 بررسی کرد. نتایج این تحقیق نشان داد که با افزایش غلظت کیتیوزان قدرت پاساژ‌گذاری آن در برای بیمارگرها افزایش یافته همچنین قدرت ضد میکروبی کیتیوزان از حد میانی تا بالای pH و در برای 5/5 و 6/5 بررسی کرد. نتایج این تحقیق نشان داد که با افزایش غلظت کیتیوزان قدرت پاساژ‌گذاری آن در برای بیمارگرها افزایش یافته همچنین قدرت ضد میکروبی کیتیوزان از حد میانی تا بالای pH و در برای 5/5 و 6/5 بررسی کرد. نتایج این تحقیق نشان داد که با افزایش غلظت کیتیوزان قدرت پاساژ‌گذاری آن در برای بیمارگرها افزایش یافته همچنین قدرت ضد میکروبی کیتیوزان از حد میانی تا بالای pH و در برای 5/5 و 6/5 بررسی کرد. نتایج این تحقیق نشان داد که با افزایش غلظت کیتیوزان قدرت پاساژ‌گذاری آن در برای بیمارگرها افزایش یافته همچنین قدرت ضد میکروبی کیتیوزان از حد میانی تا بالای pH و در برای 5/5 و 6/5 بررسی کرد. نتایج این تحقیق نشان داد که با افزایش غلظت کیتیوزان قدرت پاساژ‌گذاری آن در برای بیمارگرها افزایش یافته همچنین قدرت ضد میکروبی کیتیوزان از حد میانی تا بالای pH و در برای 5/5 و 6/5 بررسی کرد. نتایج این تحقیق نشان داد که با افزایش غلظت کیتیوزان قدرت پاساژ‌گذاری آن در برای بیمارگرها افزایش یافته همچنین قدرت ضد میکروبی کیتیوزان از حد میانی تا بالای pH و در برای 5/5 و 6/5 بررسی کرد. نتایج این تحقیق نشان داد که با افزایش غلظت کیتیوزان قدرت پاساژ‌گذاری آن در برای بیمارگرها افزایش یافته همچنین قدرت ضد میکروبی کیتیوزان از حد میانی تا بالای pH و در برای 5/5 و 6/5 بررسی کرد. نتایج این تحقیق نشان داد که با افزایش غلظت کیتیوزان قدرت پاساژ‌گذاری آن در برای بیمارگرها افزایش یافته همچنین قدرت ضد میکروبی کیتیوزان از حد میانی تا بالای pH و در برای 5/5 و 6/5 بررسی کرد. نتایج این تحقیق نشان داد که با افزایش غلظت کیتیوزان قدرت پاساژ‌گذاری آن در برای بیمارگرها افزایش یافته همچنین قدرت ضد میکروبی کیتیوزان از حد میانی تا بالای pH و در برای 5/5 و 6/5 بررسی کرد. نتایج این تحقیق نشان داد که با افزایش غلظت کیتیوزان قدرت پاساژ‌گذاری آن در برای بیمارگرها افزایش یافته همچنین قدرت ضد میکروبی کیتیوزان از حد میانی تا بالای pH و در برای 5/5 و 6/5 بررسی کرد. نتایج این تحقیق نشان داد که با افزایش غلظت کیتیوزان قدرت پاساژ‌گذاری آن در برای بیمارگرها افزایش یافته همچنین قدرت ضد میکروبی کیتیوزان از حد میانی تا بالای pH و در برای 5/5 و 6/5 بررسی کرد. نتایج این تحقیق نشان داد که با افزایش غلظت کیتیوزان قدرت پاساژ‌گذاری آن در برای بیمارگرها افزایش یافته همچنین قدرت ضد میکرو
مواد و روش‌ها

1- استخراج کیتونز از پوسته میگو

در این پژوهش از پوسته سخت میگو بینی، به‌منظور نهایی شده‌اند از عکسهای میگو استفاده گردید. در مراحل بعد پوسته‌ای با یک آب به تا یک کامپیوتر سفید و به مدت 3 ساعت در محلول سود آب و ظرفیت (pH 3 4) درصد خیس‌مانه شده تا تیست‌های گوشی‌شده و مصرفات داخلی میگو از پوسته‌ها جدا می‌شود. سپس پوسته‌ها مجدداً با آب شسته شد و در اثر 5 6 درصد دو ساعت خشک کردند و بعد با دستگاه آسیاب به‌طور تندید شد. آنگاه استخراج کیتونز از پوسته‌ها طی مراحل زیر و بر اساس روش پیشنهادات چانگ و همکاران انجام گرفت (6).

2- جداسازی مواد پوپتیسی از پوسته

این عمل با استفاده از محلول سودوزا�و پیک نترمال در دماهای 40 درصد مواد با دستگاه آسیاب به‌طور تندید شد. سپس بیابان‌های پوسته را با pH کرده و مواد باقیمانده روز صافی آب ای پر مصرف رسانیده به (Folin-ciocalteu reagent) خشک شستو کردن (6).

3- جداسازی مواد معدنی از پوسته

بیابان‌های پوسته حاصل از مرحله قبل به مدت یک ساعت در محلول استرد کلرید پر نترمال مقرا داده شد. سپس بازی پوسته به‌طور 10 درصد بیابان‌های پوسته صاف شد و مواد باقیمانده روی صافی تا رسیدن به pH خشک شستو گرددی (6).

کیتونز به‌طور آماده رنگ رنگ زرد داشته و با رنگ رنگ‌ریزی می‌شود (6).
مخلوط پودری به‌دست آمده با استفاده از دستگاه پرس مخصوص ساخت قرص به‌صورت قرص مانند درآمد و پس از خشک شدن در آن تحت خلاء در دمای ۴۰ درجه سانتی‌گراد برای آزمایش‌های اسپکتروفوتومتری مادون قرنیم آماده شد (۴).

۴- میکروارگانیسم‌های مورد مطالعه

میکروارگانیسم‌های مورد مطالعه در این تحقیق L. plantarum و S. enteritidis می‌باشد. به‌دست آمده با استفاده از دستگاه پرس مخصوص ساخت قرص به‌صورت قرص مانند درآمد و پس از خشک شدن در آن تحت خلاء در دمای ۴۰ درجه سانتی‌گراد برای آزمایش‌های اسپکتروفوتومتری مادون قرنیم آماده شد (۴).

۳- آنادزه‌گیری مقدار کیتوزان

برای آنادزه‌گیری این خصوصیت در نمونه‌های کیتوزان، مقدار گرم نمونه را در بیوسانیچی دوباره و سپس با استفاده از شعله نمونه‌ها را سوزانده و به دست ۴ ساعت در کوره‌بای دمای ۵۵ درجه سانتی‌گراد شده و با توجه به فاکتور و وزن نمونه اولیه و نمونه ناتویش درصد کیتوزان محاسبه گردید (۴۴).

۲- تعیین درصد استیلیسیون کیتوزان

در این مرحله در یک روش طیف سنجی مادون قرنیم استفاده شد و طیف مربوط به کیتوزان تولیدی باکتری کیتوزان استفاده می‌کند. و بر آن اساس، درصد یا درجه دي استیلیسیون کیتوزان تعیین شد. دستگاه مورد استفاده اسپکتروفوتومتر مادون قرنیم مدل بنگل و برای معمول کره خوردن درجه دي استیلیسیون کیتوزان روش خطر بايد به فرمول زیر به کار برده شد (۲۵):

\[
[۲] \left(\frac{A_{455}}{A_{575}} \right) + \text{baseline} \times 100 = \text{DD}
\]

در این رابطه: \(A_{455} \) = جذب در wave number/cm ۱۴۵۵ از تعداد گروه‌های استیل (مربوط به ۴۵۰ میکروجرم) و \(A_{575} \) = جذب در wave number/cm ۵۷۵ از تعداد گروه‌های استیل (مربوط به ۵۷۵ میکروجرم) در این رابطه: \(\text{DD} \) = جذب در wave number/cm ۴۵۵ از تعداد گروه‌های استیل (مربوط به ۴۵۵ میکروجرم) و \(\text{baseline} \) = فاکتور تصحیح کردن درجه غلظت‌های مختلف کیتوزان در پودر کیتوزان و پناه‌بندی پودری می‌باشد.

۱- بررسی خواص ضد میکرو‌بی‌ماری کیتوزان در سس مایونز

به‌منظور آزمایش‌های نمونه‌های کیتوزان، پودر آنها به صورت

نمونه‌های جامد قرص پنierzی در درودی در شیوه پودری مذکور پیشده.

۱-۱ توپیوم سس مایونز

به‌منظور بررسی خواص ضد میکرو‌بی‌ماری کیتوزان در سس مایونز

در حدود ۱۰۰ گرم پودر کیتوزان و ۲۰ گرم سس مایونز در شیوه مذکور پیشده.
نگهداری شدن پس از طی مدت زمان‌های ذکر شده در بند
قبل از آنها نمونه برداری شد. در این تحقیق از درصد
عنوان دمای یخبخال از دمای 50 درصد عمرهای باشد
استفاده شد.

7- تجزیه و تحلیل آماری
از طرح کاملاً تصادفی برای تجزیه و تحلیل استفاده شد و برای
این منظور نرم‌افزار آماری (SAS) به کار برده شد. برای بررسی
وجود اختلاف معنی دار بین میانگین‌ها از آزمون دانکن در سطح
درصد استفاده شد (1).

نتایج
1- تعیین درصد استحصال کیتوزان از بوسته میگو
درصد استحصال کیتوزان در حد 17 درصد تعیین گردید. این
نتیجه با تحقیقات صورت گرفته توسط چانگ و همکاران (4) و
هیبر و همکاران (16) مطابقت دارد.

2- میزان پروتئین و مواد معدنی باله مانده در کیتوزان
تایب این بررسی در مورد کیتوزان تولیدی، کیتوزان تجاری
و بوسته میگو در جدول 1 خلاصه شده است. ملاحظه می‌شود
که در پروتئین و مواد معدنی در کیتوزان تولیدی کمتر از
کیتوزان تجاری بوده و این مسأله نشان دهنده درجه خلوص
پالرات کیتوزان تولیدی است و به عبارت دیگر مواد انتقال
است که عملیات پرورش در این کشت‌های محلی بوده است. نتیجه
کاربرد نسبت درصد مناسب مواد و شستشوی مناسب در گرایند
پروتئین‌ها با آم مقدار از جمله عوامل مؤثر در زیبای
پروتئین‌های بی‌کربوهیدرات و کاربرد نسبت مناسب بوسته میگو امید
همچنین کافی ضمن نماس بوسته میگو و اسید و همچنین
شستشوی مناسب مواد باله مانده روا صاف‌پس از صاف
کرد از جمله عوامل مؤثر در زیبای کاهش املاح شبمار
می‌آید (6).

سعی گردید که سر مایونز تولیدی دقیقاً مشابه نمونه‌های باشد
که بصورت تجارتی در کارخانجات تولید می‌شوند. بدین منظور
از فرمولی که در بکی از کارخانجات معمول به پاترز استفاده
گردید و مراحل تولید سنس تاما در سیستم بالتو بسته شده
علم و صنایع غذایی دانشگاه کشاورزی دانشگاه شیراز انجام
گرفت. جهت تولید سنس مایونز به جای نگهدارنده بسته‌بندی
از پودر کیتوژان در مقیاس 3/2 و 3 درصد استفاده شد.
همچنین در هر آزمایش یک نمونه بدون انرژی کیتوژان به عنوان
نمونه شاهد در نظر گرفته شد (2).

6- بررسی تأثیر غلظت‌های 0.2 و 0.3 درصد کیتوزان
بر یک‌کاری‌های اضافه شده در سس مایونز
در این مرحله از غلظت‌های مختلف کیتوزان بر میزان رشد
یک‌کاری‌های L. plantarum و S. enteritidis در سس مایونز مورود
بررسی قرار گرفت. بدین منظور پس از تولید نمونه‌های سنس
مایونز، در مرحله آخر تولید، سوسپانسیون میکروبی از هر یک
یک‌کاری‌های مورد مطالعه به طور جداگانه طوری به سنس مایونز
اضافه شد که در نهایت غلظت
در مخلوط کردن سوسپانسیون میکروبی از دور آمایه
استفاده گردید تا به میکروگانیسم‌ها صدمه وارد نشود. سپس
نمونه‌های تولید شده در شیشه‌های 200 گرمی که قبل از اتوکلا
استیل شده بودند، بسته‌بندی گردید و نمونه‌ها در دو دمای 5°
25° C انجام شدند. در نمونه‌های سنس مایونز در مراحل زمانی
صفحه 24 ساعت، 4 روز، 8 روز و 8 روز نمونه
برداری شد. جهت تغییرات بیکاری‌های کوچک با پاسیو و
بی‌کربوهیدرات XLD agar و MRS agar و سالی‌سالی با ترتیب از محیط‌های
روش کشت نشانی استفاده شد (3).

7- بررسی تأثیر دما روی قدرت ضد میکرو‌گیمی کیتوزان در
سس مایونز
به منظور بررسی تأثیر دما روی قدرت ضد میکرو‌گیمی کیتوژان،
نمونه‌های سنس تولید شده در دو دمای 5°C و 25°C
جدول ۱. نتایج اندازه‌گیری پروتئین، خاکستر و درصد (درجه) دی استیلیسیون در کیتوزان تولیدی، کیتوزان تجاری و پوسته میگو

<table>
<thead>
<tr>
<th>پروتئین</th>
<th>خاکستر</th>
<th>نمونه</th>
<th>درصد دی استیلیسیون (درصد نسبت به وزن مطلق)</th>
<th>درصد دی استیلیسیون (درصد نسبت به وزن مطلق)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پوسته میگو</td>
<td>کیتوزان تجاری</td>
<td>کیتوزان تولیدی</td>
<td>پوسته میگو</td>
<td>کیتوزان تجاری</td>
</tr>
<tr>
<td>۸/۲۰ ± ۰/۵۷</td>
<td>۱۱/۵۷ ± ۰/۵۵</td>
<td>۱۱/۵۷ ± ۰/۵۵</td>
<td>۰/۵۳ ± ۰/۵۳</td>
<td>۰/۵۳ ± ۰/۵۳</td>
</tr>
<tr>
<td>۸۵ ± ۲</td>
<td>۹۱ ± ۱</td>
<td>۹۱ ± ۱</td>
<td>۹۱ ± ۱</td>
<td>۹۱ ± ۱</td>
</tr>
</tbody>
</table>

جدول ۲. تأثیر کیتوزان بر باکتری‌های مورد مطالعه (۰۵°cells/ml)

<table>
<thead>
<tr>
<th>MIC (mg/ml)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.enteritis</td>
<td>L.plantarum</td>
</tr>
<tr>
<td>MIC (mg/ml)</td>
<td>pH</td>
</tr>
<tr>
<td>۰/۸۰</td>
<td>۰/۸۰</td>
</tr>
<tr>
<td>۰/۵</td>
<td>۱/۵</td>
</tr>
</tbody>
</table>

۳- تعبین میزان MBC و MIC کیتوزان تولیدی

میزان MBC و MIC کیتوزان تولیدی در دو pH ۷ و ۶ در مورد Senteritis و L_plantarum تعبین شد. نتایج نشان داد که در pH ۷ دما، میزان MBC و MIC کیتوزان تولیدی باکتری‌های Senteritis و L_plantarum در دو pH ۷ و ۶ به ترتیب ۷ و ۶ میلی‌گرم در هر میلی‌لیتر مایع (۲۵۰ mg/l) تعبین شد. در pH ۶، میزان MBC و MIC کیتوزان تولیدی باکتری‌های Senteritis و L_plantarum در دو pH ۷ و ۶ به ترتیب ۷ و ۶ میلی‌گرم در هر میلی‌لیتر مایع (۲۵۰ mg/l) تعبین شد.

۴- تعبین میزان MBC و MIC کیتوزان تولیدی

میزان MBC و MIC کیتوزان تولیدی در دو pH ۷ و ۶ در مورد باکتری‌های Senteritis و L_plantarum تعبین شد. نتایج نشان داد که در pH ۷ دما، میزان MBC و MIC کیتوزان تولیدی باکتری‌های Senteritis و L_plantarum در دو pH ۷ و ۶ به ترتیب ۷ و ۶ میلی‌گرم در هر میلی‌لیتر مایع (۲۵۰ mg/l) تعبین شد. در pH ۶، میزان MBC و MIC کیتوزان تولیدی باکتری‌های Senteritis و L_plantarum در دو pH ۷ و ۶ به ترتیب ۷ و ۶ میلی‌گرم در هر میلی‌لیتر مایع (۲۵۰ mg/l) تعبین شد.

۵- بررسی تأثیر غلظت‌های مختلف کیتوزان بر باکتری در S. plantarum

نتایج بررسی غلظت‌های مختلف کیتوزان بر باکتری S. plantarum نشان داد که به بیش از زمان‌هایی که در تاپunas با کاهش pH می‌پذیرم، کیتوزان غلظت‌های مختلف کیتوزان بر باکتری S. plantarum نشان داد که به بیش از زمان‌هایی که در تاپunas با کاهش pH می‌پذیرم، کیتوزان غلظت‌های مختلف کیتوزان بر باکتری S. plantarum
بررسی امکان استفاده از کیتوزان به عنوان یک نگهدارنده طبیعی در سس ماپوز

growth of *L. plantarum* (25 °C)

شکل 1 تأثیر کیتوزان بر باکتری *L. plantarum* در سس ماپوز (دمای 25 °C)

شکل 2 تأثیر کیتوزان بر باکتری *L. plantarum* در سس ماپوز (دمای 25 °C)

بعد به طور مشخصی بر روی مقد. در شکل 1 روند کاهش تعداد باکتری‌ها در گروه‌های تیمار به خوبی نشان داده شده است. بررسی‌های انجام شده نشان داد که در گروه‌های تیمار حاوی 1% کیتوزان به میزان log 7.2 در گروه‌های حاوی 2% کیتوزان به میزان log 6.5 در گروه‌های حاوی 3% کیتوزان به میزان log 6.2 کاهش در تعداد باکتری‌ها نسبت به شاهد پس از 8 روز نگهداری می‌کردند و با افزایش غلظت کیتوزان تعداد باکتری‌ها به نسبت بیشتری کاهش می‌یافت. نتایج بررسی تأثیر کیتوزان بر باکتری*E. coli* واکسن سیلیسوس در دمای 5 °C در شکل 2 نشان داده شده است. این نتایج نشان می‌دهد که در زمان صفر بین گروه‌های تیمار اختلاف معنی‌دار مشاهده نمی‌شود. بدین معنی که تعداد باکتری‌ها در زمان صفر در تمام گروه‌ها تقریباً یکسان می‌باشد. اما پس از گذشت زمانهای 4، 6 و 8 روز با افزایش میزان کیتوزان مصرفی تعداد باکتری‌ها به نسبت بیشتری کاهش می‌یابد به طوری که پس از زمان دو روز بین
شکل ۳. تأثیر کیتوزان بر باکتری S. enteritidis در سس مایونز (دامای ۲۵ درجه سانتی‌گراد).

شکل ۴. تأثیر کیتوزان بر باکتری S. enteritidis در سس مایونز (دامای ۵ درجه سانتی‌گراد).

کیتوزان یکی از گذشته ۶ روز قبل به نابود ساختن الکلی pH جمعیت سالمونلا در سس مایونز شدند. به علت این که سس مایونز نشان دهنده اثر کاهش pH سالمونلا ناسازگاری می‌کند در نمونه شاهد نیز با گذشت زمان در جمعیت اولیه سالمونلاکاهش می‌شود. همچنین و نتایج نشان داد که کیتوزان تولیدی علیه S. enteritidis موثرتر عمل کرده و تعداد این باکتری در سس مایونز نسبت به باکتری میزان پیشتری کاهش یافته است. در این شرایط شناس زنده L. plantarum مانند و رشد باکتری S. enteritidis منابع و رشد باکتری کمتر خواهد بود. در رابطه با قدرت ضد میکروبی کیتوزان در مواد غذایی عامل مختلفی تأثیر دارد. رولر و کویل (۲۲) سایر و همکاران (۳۲) و وانگ (۷۷) عواملی چون pH دمای نگهداری، سن میکروگلیسیم، غلتک نمک‌ها و ترکیب ماده غذایی را یکی درقد ضد میکروبی کیتوزان مؤثر دانسته‌اند.

رفتن سالمونلا در دمای ۲۵ درجه سانتی‌گراد باعث کاهش میکروبی‌های میکروبی‌زایی غذایی می‌شود. این باعث این می‌شود که برای این رفتار سالمونلا در سس مایونز که در آن تخم مرغ غیر پاستوریزه با کار رفته، سس مایونز با یکی حداق به مدت ۷۲ ساعت در دمای ۱۹-۲۰ درجه سانتی‌گراد بررسی شده و تأثیر مختلف انواع کیتوزان بر باکتری S. enteritidis در سس مایونز در دمای ۵ درجه سانتی‌گراد در سه روز ۴ نشان داده شده است. نتایج نشان دهنده این واقعی است که نا روز دوم غلط‌های مختلف کیتوزان باعث کاهش میکروبی در جمعیت این باکتری نسبت به نمونه شاهد شده‌اند اما پس از گذشت ۴ روز بین جمعیت میکروبی تیمارهای حاصله ۴ و ۳ درصد کیتوزان و نمونه شاهد اختلاف معنی‌دار وجود ندارد همچنین غلط‌های ۲ درصد کیتوزان یکی از گذشته ۸ روز و غلط‌های ۳ درصد
درصد کیتوزان در سنس مایونی پیشنهاد می‌شود.

سپاسگزاری

از به هم کارگان به‌شکل علمی و صنایع غذایی و مستقل پژوهشی و امرزونی دانشگاه شیراز که در تأمین امکانات لازم و مراحل اجرایی این پژوهش همکاری داشته‌اند، تشکر و قدردانی می‌شود.

بحث

با توجه به این نتایج که کشور ما از نظر استاندارد به منابع دریایی غنی می‌باشد. ایجاد صنایع نیازمند ضرایبی و تولید محصولاتی از قبل کیتوزان می‌تواند در جهت استفاده بیشترین بهره‌برداری در مناطق جنوب کشور گام مهمی محصول شود.

بررسی اثرات ضد میکروبری کیتوزان تولیدی نشان داد که این ماده قادر است خواص بارداری‌گذگی علی‌های هر در باکتری L. plantarum و S. enteritidis از خود نشان دهد بدنی تثبیت که بررسی‌های به عمل آمده در زمینه تأثیر این ماده روی

منابع مورد استفاده

1. چمیابی، ع. (1370) طرح‌های آماده در علوم کشاورزی. انتشارات دانشگاه شیراز.
2. موسسه استاندارد و تحقیقات صنعتی ایران. آموزش‌های شیمیایی مس مایونی. استاندارد شماره 2162. چاپ دوم، صفحات 1-6.
3. موسسه استاندارد و تحقیقات صنعتی ایران. آموزش‌های میکروبری و روش آموزشی مس مایونی. استاندارد شماره 2163. چاپ دوم.

application to oyster preservation. J. Food Prot. 61(9): 1124-1128.

