تیمین ترکیبات شیمیایی و انرژی قابل سوخت و ساز ضایعات کارخانجات ماکارونی و لبه پاک کنی در سطوح مختلف

عبس اله عبدی فزليه

چکیده

بر اساس آمار رسمی سازمان صنایع و معادن در استان آذربایجان شرقی سالهای میان 1380 تا 1386 ضایعات در کارخانجات بهبود ماکارونی و ساز این ضایعات از 20 تا 30 درصد نسبت به هر کیلوگرم در هر هفته بوده است. در این مقاله تفهیم ترکیبات کارخانجات بهبود ماکارونی و ساز این ضایعات در سطوح مختلف ارائه گردیده و برای کنترل هنگام تولید کیک طبقه بالا در تولید جزئیات کیکی به کار برده شده است. برای اینکه تولید زیبایی به کیکهای بافت پاک کنی در کارخانجات بهبود ماکارونی و ساز ضایعات بهبودی قابل گزارش نسبت به هر کیلوگرم در هر هفته است. در این مقاله از تحلیل علوم طبیعی و مهندسی بهره می‌برده. برای هنگام تولید کیک بافت پاک کنی در کارخانجات بهبود ماکارونی و ساز ضایعات بهبودی قابل گزارش نسبت به هر کیلوگرم در هر هفته است. در این مقاله از تحلیل علوم طبیعی و مهندسی بهره می‌برده.

واژه‌های کلیدی: انرژی قابل سوخت و ساز، ضایعات ماکارونی، ضایعات لبه پاک کنی

مقدمه

گردید با افزایش تعدادی قابل سوخت و ساز (Metabolizable energy) و ترکیبات مواد مغذی آن مشخص گردید. میزان انرژی قابل استفاده مواد خوراکی به دلایل زیر از اهمیت بسیار زیادی در تغذیه طیور برخوردار است. اول‌اً: انرژی قابل استفاده، بیشترین هزینه جهت تولید گوشته سفید و تخم مرغ را به خود اختصاص می‌دهد.

1. کارشناس ارشد مرکز تحقیقات کشاورزی و منابع طبیعی آذربایجان شرقی، تبریز
2. مسئول مکاتبات، پست الکترونیکی: e_abdi2005@yahoo.com

349
سالن آزمایشی جهت به دستگاه تهیه مناسب بود و از برنامه
ساعت رشته‌ای و سعی در افزایش استفاده از گرد و میزان
روش‌های نیز به وسیله دیگر قابل تنظیم بود. برای انجام این تحقیق
۲۸ تقطع خروس لگن‌هورسی بهصورت نیازمندی، بنا تاراجی
های‌ای (Hy - line) از شرکت پورش مرغ سوار تخم‌گذار
مرغ و خریداری ث می‌شد و محل اجرای آزمایش انتقال داده
شد و در مرحله اصلی آزمایش از ۲۸ تقطع از خروسها که ورک
تکمیلی یکسان و برای بازوی ۱ تا ۲ کیلو‌گرم داشتند استفاده
کردند. برای تغذیه ضایعات و مصالح مختلف آنها این آزمایش در دو
مرحله انجام گرفت.

برای عادت بذیردی خروسها به شرایط محیطی جدید
مکالمه ۱۲ روز کافی است (۱۶). ولی به دلیل اینکه خروسها
مدت زیادی در بستر زندگی پرده‌پوش برای مدت بذیردی بهتر
آنها با محیط این زمان بیشتر و حدود یک ماه در نظر گرفته شد.
در طول مدت عادت بذیردی و قبل از انجام مرحله اصلی
آزمایش، همه خروس‌ها مطابق توصیه NRC برای مرغان
تحم‌گذاری و چرخه‌های با ۱۵ روز خاوی یک طیورهای میکرو
آزاد تغذیه شدند (۶ و ۱۲). لازم دارد به ذکر است که این برای
مدت آزمایش به صورت آزاد در اختیار آنها قرار گرفت. فرمول و
ترکیبات انجام پایه در جدول ۱ ارائه شده است.

بعد از مرحله عادت دهی، ۱۸ تقطع خروس مورد آزمایش به
۷ گروه چهارتاپی تقسیم شدند و برای ناپاکسی توانش و پری (Hartley's test)
معنی دار بین گروهها از آزمون هارتی (1) (پایاپایی
پاپان واریانس گروه‌ها استفاهه شد) ضایعات مکارونی
در ۶ نسبت (۱۵، ۳۰، ۴۵، ۶۰ و ۱۰۰ درصد) و
ضایعات لیه‌پاکتی در دو نسبت (۱۵ و ۴۵ درصد) با جهش پایه
مخلوط شده و سپس تغذیه شدند. قبل از شروع تغذیه مقدار
خوارات مصرفی با تزریق دیجنتیکه با حساسیت ۱/۶۰ گرم
توزیون و در داخل طول بالاکشش درب دار ریخته شد و مواد
خوارات مورد آزمایش قابل از مخلوط شدن با جهش پایه اسباب
شده و سپس در نسبت‌های ذکر شده، با خوارات پایه کاملا
مخلوط گردیده و در نهایت مجموع جهش پایه و ماده خوارات

ثانیاً، مصرف خوراکی، جز چند استناد، رابطه مکعسوی بین تراکم
انرژی قابل استفاده‌اندازه و تراکم قابل استفاده برای
طیور یک نیاز ضروری و مهم جهت بقای آنهاست (۱۵).
بنابراین اهمیت ضایعات کالری‌های خوراکی در تغذیه
چهارتاپی طیور و بهره‌برداری مصرف. مناسفانه همه انرژی
شیمیایی طی خوراک برای مصرف مصرف نمی‌شود و در کل
تغذیه انرژی قابل استفاده سازی یا ماده خوارات
آزمایشی به‌پژوهی انجام شد (۱۲).

در کشور ما تا کنون برخوردهای جامع و کاملی در مورد
ضایعات کارخانجات مکارونی صورت گرفته است. هر چند
مطالعات اندکی در مورد ضایعات مکارونی یک کارخانه در
و ۱۵ درصد مورد میزان
امیده می‌باشد مکارونی و قابلیت ایمنی انسپوئری آنها
در جوی‌آوری گوشی نیز اندازه‌گیری شده است (۲۱). هدف از
اجرا یاب استخوان ضایعات مکارونی و ضایعات لیه پاکتی
جهت ایجادی در طیور و همچنین ضایعات انتزاع قابل
ساسیت و سازی ضایعات مکارونی و ضایعات لیه پاکتی در
سطح مختلف با استفاده از معادلات رگرسیون بود.

مواد و روش‌ها
برای انجام این آزمایش، ابتدا از سازمان صنعتی و معاینات
آزمایشی شرکت کارخانجات تهیه مکارونی موجود در
استان تهران گردید که در این بسته‌ها مصرف تولید هر
کارخانجات نیز گزارش شده بود. به ۱۵ درصد این کارخانجات
مراجعه گردید و بر اساس روش نمونه‌برداری تصادفی
طبیعی‌بدنی شده نمونه برداری انجام پذیرد. نمونه‌های
جمع‌آوری شده به طور جدایی آسان و مخلوط گردیدند. از
نمونه‌های جمع‌آوری شده به هر نمونه نهایی به دست
آمد. این تحقیق در آزمایشگاه استانی طیور، واقع در مزرعه
آموزشی پروش طیور واقع در روستای آبی‌روده سی مجمع
آموزش جهاد کشاورزی استان آذربایجان شرقی انجام گرفت.

۳۵۰
جدول 1: فرمول و ترکیبات چربی پایه

<table>
<thead>
<tr>
<th>درصد</th>
<th>ماده خوراکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>51/4</td>
<td>ذرت</td>
</tr>
<tr>
<td>22/83</td>
<td>کتجال سویا</td>
</tr>
<tr>
<td>476</td>
<td>پودر استخوان</td>
</tr>
<tr>
<td>3</td>
<td>مکمل ویتامینی</td>
</tr>
<tr>
<td>0/3</td>
<td>مکمل معدنی</td>
</tr>
<tr>
<td>0/2</td>
<td>نمک</td>
</tr>
<tr>
<td>0/4</td>
<td>متونین</td>
</tr>
</tbody>
</table>

انرژی و مواد غذایی موجود در چربی پایه

انرژیقابلمنابولسم(کیلوکالریبرکیلوگرم)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>پروتئین خام(%)</td>
</tr>
<tr>
<td>7/2</td>
<td>چربی خام(%)</td>
</tr>
<tr>
<td>3/1</td>
<td>الیاف خام(%)</td>
</tr>
<tr>
<td>6/6</td>
<td>کلسیم(%)</td>
</tr>
<tr>
<td>1/63</td>
<td>فسفرقابلمنابولسم(%)</td>
</tr>
<tr>
<td>1/64</td>
<td>آنزیم تنین(%)</td>
</tr>
<tr>
<td>0/4</td>
<td>متونین(%)</td>
</tr>
<tr>
<td>0/6</td>
<td>سیستین(%)</td>
</tr>
<tr>
<td>0/4</td>
<td>لیزین(%)</td>
</tr>
</tbody>
</table>

شده دوران آزمایش منقل شدند و سبیلهای جمع‌آوری مهدی به دو گروه کنترل و آزمایش تقسیم شدند. از این گروه‌ها با گروه چهارتابی به عنوان شاهد نخواهد قرار گرفت. برای اطمینان از جمع آوری مهدی و جلوگیری از آلودگی با مواد خارجی از روش پیشنهادی سیاست، استفاده از کیسه‌های جمع آوری کننده مهدی به تغییرات مخچری در وسایل کار استفاده شد (20). تخمیری از شماره‌گذاری شده جهت جلوگیری از فعالیت‌های نمونه‌های شما به سهولت تخلیه فضولات از کیسه‌های نابینی به طور انتقال داده شدند، سپس نمونه‌ها از فریزر خارج و پس از تخلیه از کیسه‌ها به طریق آلومینیومی منقل شدند و وزن طرف و طرف با فضولات انداره‌گیری شدند. برای تعیین درصد ماده خشک، نت‌وزن و انرژی خام، فضولات ابتدا از حالت انجامد

مورد آزمایش 30 گرم بود.

از 28 تقسیم خوراک، یک گروه به عنوان شاهد نخواهد قرار گرفت. از این گروه دریافت کنندگان در خود رها نمی‌شوند. برای اطمینان از جمع آوری مهدی به این اقدام تخلیه کامل دستگاه‌های خروک تیپ برود. سپس تعیین آبجایانی از فضولات خروسیا به مدت 24 ساعت جمع آوری کردند. برای بازپرسی زمان اختصاص داده شده برای هر آزمایش 24 ساعت بود. در دوره استراحت تیپ یا آزمایش نبرده نمی‌باشد. این اقدام برای تغذیه اجباری، خروسیا به فرآیند شماره‌گذاری پس از تغذیه اجباری، خروسیا به فرآیند شماره‌گذاری

351
۰۵° درجه سانتی‌گراد، داده
۰۵° درجه حرارت
۱۰۵۰ درجه حرارت
۱۰۱۰ برای اندازه‌گیری الاف خام، دیواره سولو و
دبای سولو به فیلتر همی سولو، از دستگاه بمب کارتلی از
اداپتانیک برای اندازه‌گیری انرژی خام و از روش سوکسنسل برای
اندازه‌گیری خیب خام استفاده گردید.

عصاره عازاری از نیتروژن قرار گرفته در محیط دانشگاه
ارتفاع شده به وسیله سیلندر محیط گردید.

\[
TME = \text{AME} + \frac{EEL + \frac{\lambda}{\gamma} \times \text{NR}}{\text{Fi}}
\]

\[\text{ED} = P \times \text{EF} + (1 - P) \times \text{EB} \]

\[\text{AME} = \frac{G_{E} - G_{F}}{\text{Fi}}
\]

\[\text{AME}_n = \text{AME} - \frac{\lambda}{\gamma} \times \text{NR} \times \text{Fi}
\]

\[\text{NR} = N_c - N_e
\]

\[\text{TME} = \text{AME} + \frac{EEL}{\text{Fi}}
\]
نتیجه ترکیبات شیمیایی انزیم قلی قلوس و سوخت و ساز ضایعات کارخانجات...

معنی داری دارد (5/0/6) بیشترین انرژی زمینی به دست آمده است که ضایعات ماکارونی در سطح 30 درصد نسبت به چربی پایه از دسترسی ضایعات برنج در سطح 75 درصد مشاهده گردید. کمترین انرژی در سطح 25 درصد مشاهده گردید. این امر توجه داشته و نشان دهنده است که این انرژی قابل متولیت ضایعات ماکارونی و خوراک پایه باشد. به این ترتیب می‌توان نشان داد که در فاصله مصرف هر یک تغذیه، این انرژی قابل متولیت ضایعات ماکارونی و خوراک پایه باشد. به این ترتیب قابل متولیت ضایعات ماکارونی و خوراک پایه باشد. به این ترتیب قابل متولیت ضایعات ماکارونی و خوراک پایه باشد. به این ترتیب قابل متولیت ضایعات ماکارونی و خوراک پایه باشد. به این ترتیب قابل متولیت ضایعات ماکارونی و خوراک پایه باشد. به این ترتیب...
جدول ۲- ترکیب مواد مغذی ضایعات غذایی مورد آزمایش

| ماده | دیواره سلولی بدون عصاره عاري از پروتونین (NDF) (%)| دیواره سلولی بدون بهره از نیتروژن (ADF) (%)| خام/گرم | پروتونین | جرم | فرمولتراژن | ایلام | نیتروژن | جرم | پروتونین | جرم | فرمولتراژن | ایلام | نیتروژن | جرم | پروتونین | جرم | فرمولتراژن | ایلام | نیتروژن | جرم | پروتونین | جرم | فرمولتراژن | ایلام | نیتروژن |
|------------------------|---|---|----------|----------|------|-----------|-------|----------|------|----------|------|-----------|-------|----------|------|----------|------|-----------|-------|----------|------|----------|------|-----------|-------|----------|------|----------|------|-----------|-------|----------|
| ماکارونی | ۴۴/۸ | ۴۲/۸ | ۱/۸ | ۴/۸ | ۸/۷ | ۱/۸ | ۲/۷ | ۸/۷ | ۱/۸ | ۴/۸ | ۸/۷ | ۱/۸ | ۲/۷ | ۸/۷ | ۱/۸ | ۴/۸ | ۸/۷ | ۱/۸ | ۲/۷ | ۸/۷ | ۱/۸ | ۴/۸ | ۸/۷ | ۱/۸ |
| لیه | ۹۴/۳ | ۹۴/۳ | ۳/۸ | ۳/۸ | ۸/۷ | ۳/۸ | ۸/۷ | ۱/۸ | ۲/۷ | ۲/۷ | ۸/۷ | ۱/۸ | ۲/۷ | ۸/۷ | ۱/۸ | ۸/۷ | ۱/۸ | ۸/۷ | ۱/۸ | ۸/۷ | ۱/۸ | ۸/۷ |

۱- Nitrogen Free Extract ۲- Neutral Detergent Fiber ۳- Acid Detergent Fiber

جدول ۳- مقایسه میانگین انواع انرژی قابل متابولیسم جهالی حاوی مقدارتمنتوت ضایعات ماکارونی و جیره هایه (کیلوگرام بر کیلوگرم)

<table>
<thead>
<tr>
<th>ضایعات ماکارونی به جیره پایه</th>
<th>TME<sub>n</sub></th>
<th>TME</th>
<th>ME<sub>n</sub></th>
<th>AME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۳۰/۲۴<sup>±</sup></td>
<td>۳۱/۸<sup>±</sup></td>
<td>۲۹/۱۵<sup>±</sup></td>
<td>۲۸/۵<sup>±</sup></td>
</tr>
<tr>
<td></td>
<td>۳۱/۹۵<sup>±</sup></td>
<td>۳۲/۲<sup>±</sup></td>
<td>۲۹/۴<sup>±</sup></td>
<td>۲۹/۵<sup>±</sup></td>
</tr>
<tr>
<td></td>
<td>۳۳/۸۱<sup>±</sup></td>
<td>۳۴/۲<sup>±</sup></td>
<td>۳۳/۸۱<sup>±</sup></td>
<td>۳۳/۸۱<sup>±</sup></td>
</tr>
<tr>
<td></td>
<td>۳۵/۱۰<sup>±</sup></td>
<td>۳۵/۵<sup>±</sup></td>
<td>۳۴/۷<sup>±</sup></td>
<td>۳۴/۷<sup>±</sup></td>
</tr>
<tr>
<td></td>
<td>۳۶/۱۰<sup>±</sup></td>
<td>۳۶/۵<sup>±</sup></td>
<td>۳۵/۵<sup>±</sup></td>
<td>۳۵/۵<sup>±</sup></td>
</tr>
<tr>
<td></td>
<td>۳۷/۳<sup>±</sup></td>
<td>۳۷/۳<sup>±</sup></td>
<td>۳۶/۵<sup>±</sup></td>
<td>۳۶/۵<sup>±</sup></td>
</tr>
<tr>
<td></td>
<td>۴۰/۱<sup>±</sup></td>
<td>۴۰/۱<sup>±</sup></td>
<td>۳۹/۵<sup>±</sup></td>
<td>۳۹/۵<sup>±</sup></td>
</tr>
<tr>
<td></td>
<td>۴۲/۷<sup>±</sup></td>
<td>۴۲/۷<sup>±</sup></td>
<td>۴۱/۵<sup>±</sup></td>
<td>۴۱/۵<sup>±</sup></td>
</tr>
<tr>
<td></td>
<td>۴۴/۸<sup>±</sup></td>
<td>۴۴/۸<sup>±</sup></td>
<td>۴۳/۵<sup>±</sup></td>
<td>۴۳/۵<sup>±</sup></td>
</tr>
</tbody>
</table>

در هر ستون، ارقامی که دراز حروف متفاوت هستند اختلاف معناداری دارند (P<۰/۰۵).

امیدواره ای: انرژی قابل سوخت و ساز ظاهری = AMEn، انرژی قابل سوخت و ساز ظاهری = AМE

امیدواره تی: انرژی قابل سوخت و ساز حقیقی = TMEn، انرژی قابل سوخت و ساز حقیقی = TМE

میانگین ± خطای معیار

354
جدول 2: مقایسه میانگین انواع اترزی قابل مناسب‌سازی عناصر ماکروانی در سطوح مختلف (کیلوگرم در هر کیلوگرم)

<table>
<thead>
<tr>
<th>TME<sub>i</sub></th>
<th>TME</th>
<th>AME<sub>i</sub></th>
<th>AME</th>
</tr>
</thead>
<tbody>
<tr>
<td>3200 ± 11</td>
<td>3180 ± 30</td>
<td>2915 ± 11</td>
<td>2854 ± 30</td>
</tr>
<tr>
<td>3600 ± 24</td>
<td>3765 ± 44</td>
<td>3556 ± 24</td>
<td>3441 ± 40</td>
</tr>
<tr>
<td>2400 ± 55</td>
<td>2322 ± 32</td>
<td>2372 ± 55</td>
<td>2898 ± 22</td>
</tr>
<tr>
<td>3747 ± 20</td>
<td>3842 ± 28</td>
<td>3742 ± 20</td>
<td>3547 ± 28</td>
</tr>
<tr>
<td>3842 ± 18</td>
<td>3778 ± 28</td>
<td>3842 ± 18</td>
<td>3658 ± 18</td>
</tr>
<tr>
<td>3791 ± 20</td>
<td>3711 ± 20</td>
<td>3791 ± 20</td>
<td>3591 ± 20</td>
</tr>
<tr>
<td>3866 ± 27</td>
<td>3791 ± 27</td>
<td>3866 ± 27</td>
<td>3691 ± 27</td>
</tr>
<tr>
<td>3731 ± 19</td>
<td>3794 ± 24</td>
<td>3731 ± 19</td>
<td>3571 ± 24</td>
</tr>
</tbody>
</table>

SEM

1. میانگین ± خطای معیار

در هر سنین، اعضایی که حرکت مشابه تنارزند دارای اختلاف معنی‌داری می‌باشد (P<0.05).

ماکروانی نسبت داده‌اند.

با توجه به جدول NRC (1994) روشن می‌گردد که انواع اترزی قابل مناسب‌سازی عناصر ماکروانی کبیرتر از انواع قابل مناسب‌سازی عناصر ماکروانی گندم می‌باشد. این امر ناشی از فراوانی حصار تیت است که در فراوانی همبستگی می‌گردد. فرآوری حصار تیت به‌نظر می‌رساند که گل‌گیری و همان شکل انسجامی غلات می‌توانند نشان نمایندگی کند. و در این پژوهش نیز انواع قابل مناسب‌سازی عناصر ماکروانی و رشته‌های توانا در مقایسه با گندم حداکثر به 40 ± 15 درصد بیشتر بود.

در جدول 5، روابط بین سطوح مختلف ضایعات ماکروانی در جهار یا پایه (X) و میزان انواع اترزی قابل مناسب‌سازی مخلوط

چهار تایپ و ضایعات ماکروانی (Y) ارائه شده است.

انواع اترزی قابل مناسب‌سازی و ساز چهار تایپ

پرندگی مورد آزمایش باشد اکثر چه‌سمیال‌ها آزمایش روی خرد‌های گندم بین خروس‌های بالغ و بوقلمون تفاوت می‌پذیرد. نتایج است. به نظر می‌رسد دلیل تفاوت بین TME معنی‌داری ندارد است. به طور می‌رسد دلیل تفاوت بین ضایعات ماکروانی در تحقیق خاص و بوقلمون می‌تواند ناشی از مواد خام سرمایه‌داری در تهیه ماکروانی از قبیل نوع آرد گندم با وجود افرادی‌ها در ماکروانی مورد استفاده در مطالعه مذکور باشد. علاوه بر آن نحوه فراوانی ماکروانی و فن آوری به کار رفته در آن نیز می‌تواند در این تفاوت دخیل باشد.

اما توجه به اینکه اکثر ضایعات ماکروانی در آزمایشات کمتر بوده و نیز در توان انتظار که اترزی قابل مناسب‌سازی آن TME نیز کمتر باشد. بنابراین نیاز به دلیل بیشتر بودن ماکروانی را از طرفی بیشتر بودن اترزی خام ضایعات

355
جدول ۵. روابط بین سطوح مختلف ضایعات مکاروتی در جیره پایه (X) با میزان انواع انرژی قابل سوخت و ساز

<table>
<thead>
<tr>
<th>ضایعات مکاروتی</th>
<th>انواع انرژی قابل سوخت و ساز</th>
<th>ضایعات مکاروتی</th>
<th>انواع انرژی قابل سوخت و ساز</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X=100)</td>
<td>(R²)</td>
<td>Y=21.160±0.73X</td>
<td>AME</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y=21.860±0.72X</td>
<td>AMEn</td>
</tr>
<tr>
<td>3680</td>
<td>0.95</td>
<td>Y=22.905±0.74X</td>
<td>TME</td>
</tr>
<tr>
<td>3758</td>
<td>0.95</td>
<td>Y=22.960±0.75X</td>
<td>TMe</td>
</tr>
<tr>
<td>4013</td>
<td>0.94</td>
<td>Y=22.970±0.75X</td>
<td>TMe</td>
</tr>
<tr>
<td>3822</td>
<td>0.94</td>
<td>Y=22.970±0.75X</td>
<td>TMe</td>
</tr>
</tbody>
</table>

Mقدار ضایعات مکاروتی در جیره پایه بر حسب درصد

= میزان انرژی قابل سوخت و ساز مخلوط جیره پایه و ضایعات مکاروتی بر حسب کیلوکاری در کیلوگرم

جدول ۶. مقایسه میانگین انواع انرژی قابل سوخت و ساز جیره‌های حاوی مقدار متفاوت ضایعات لیه پاک‌کنی و جیره پایه در سطح مختلف (کیلوکاری بر کیلوگرم)

<table>
<thead>
<tr>
<th>TMe, TME, AMEn, AME</th>
<th>نسبت ضایعات لیه پاک‌کنی به جیره پایه</th>
</tr>
</thead>
<tbody>
<tr>
<td>3680±11</td>
<td>0.100</td>
</tr>
<tr>
<td>3758±16</td>
<td>0.1585</td>
</tr>
<tr>
<td>4013±15</td>
<td>0.255</td>
</tr>
<tr>
<td>3822±25</td>
<td>0.148</td>
</tr>
</tbody>
</table>

SEM

میانگین ± خطای معیار

در هر ستون، ارقامی که دارای حروف مقاوتی هستند، اختلاف معنی‌دار دارند (p<0.05).

آمیزاب یک گواشت گوشتی شبیه به جیره پایه را در میانگین به مادهکه به صورت غیر مستقیم در هضم و جذب دخالت دارد. آنها ضایعات Mکاروتی از قبیل لکچری نان، نتان، و پلی ساکاریدها غیر مشاهده می‌شوند (۱).

امیزاب یک گواشت گوشتی شبیه به جیره پایه را در میانگین به مادهکه به صورت غیر مستقیم در هضم و جذب دخالت دارد. آنها ضایعات Mکاروتی از قبیل لکچری نان، نتان، و پلی ساکاریدها غیر مشاهده می‌شوند (۱).

جدول ۶. مقایسه میانگین انواع انرژی قابل سوخت و ساز جیره‌های حاوی مقدار متفاوت ضایعات لیه پاک‌کنی و جیره پایه در سطح مختلف (کیلوکاری بر کیلوگرم)

<table>
<thead>
<tr>
<th>TMe, TME, AMEn, AME</th>
<th>نسبت ضایعات لیه پاک‌کنی به جیره پایه</th>
</tr>
</thead>
<tbody>
<tr>
<td>3680±11</td>
<td>0.100</td>
</tr>
<tr>
<td>3758±16</td>
<td>0.1585</td>
</tr>
<tr>
<td>4013±15</td>
<td>0.255</td>
</tr>
<tr>
<td>3822±25</td>
<td>0.148</td>
</tr>
</tbody>
</table>

SEM

میانگین ± خطای معیار

در هر ستون، ارقامی که دارای حروف مقاوتی هستند، اختلاف معنی‌دار دارند (p<0.05).

آمیزاب یک گواشت گوشتی شبیه به جیره پایه را در میانگین به مادهکه به صورت غیر مستقیم در هضم و جذب دخالت دارد. آنها ضایعات Mکاروتی از قبیل لکچری نان، نتان، و پلی ساکاریدها غیر مشاهده می‌شوند (۱).

امیزاب یک گواشت گوشتی شبیه به جیره پایه را در میانگین به مادهکه به صورت غیر مستقیم در هضم و جذب دخالت دارد. آنها ضایعات Mکاروتی از قبیل لکچری نان، نتان، و پلی ساکاریدها غیر مشاهده می‌شوند (۱).

جدول ۶. مقایسه میانگین انواع انرژی قابل سوخت و ساز جیره‌های حاوی مقدار متفاوت ضایعات لیه پاک‌کنی و جیره پایه در سطح مختلف (کیلوکاری بر کیلوگرم)

<table>
<thead>
<tr>
<th>TMe, TME, AMEn, AME</th>
<th>نسبت ضایعات لیه پاک‌کنی به جیره پایه</th>
</tr>
</thead>
<tbody>
<tr>
<td>3680±11</td>
<td>0.100</td>
</tr>
<tr>
<td>3758±16</td>
<td>0.1585</td>
</tr>
<tr>
<td>4013±15</td>
<td>0.255</td>
</tr>
<tr>
<td>3822±25</td>
<td>0.148</td>
</tr>
</tbody>
</table>

SEM

میانگین ± خطای معیار

در هر ستون، ارقامی که دارای حروف مقاوتی هستند، اختلاف معنی‌دار دارند (p<0.05).
جدول 7 مقایسه میانگین انواع انرژی قابل سوخت و ساز ضایعات له پاک‌کنی در سطح مختلط (کیلوکاری بر کیلوگرم)

<table>
<thead>
<tr>
<th>TME<sub>n</sub></th>
<th>TME</th>
<th>AME<sub>n</sub></th>
<th>AME</th>
<th>مقدر ضایعات له پاک‌کنی (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2878±4</td>
<td>39</td>
<td>2895±3</td>
<td>31</td>
<td>15</td>
</tr>
<tr>
<td>3378±6</td>
<td>51</td>
<td>3380±6</td>
<td>53</td>
<td>25</td>
</tr>
</tbody>
</table>

1. میانگین ± خطای معیار

پیوسته از سیاست مدار حرفه‌ای هستند. اختلاف معنی‌دار دارند (p<0.05).

پرورش اسکپرانت از لحاظ پیشرفت به‌دست آمده از AMEn می‌باشد. بنابراین، این نتایج پژوهش حاضر را تأیید می‌نماید.

امنیت انرژی قابل سوخت و ساز ضایعات له پاک‌کنی (جدول 7) در مقایسه با انرژی نخود در ناحیه NRC (1994) به‌صورت می‌باشد. که این امر می‌تواند ناشی از پیشرفت به‌دست آمده.

منابع مورد استفاده

1. ظاها، م.چ.، پوررضا، ع. سعیدی، ح. ر، و حمایتی، 1383. تعبیه ارزش غذایی و استفاده از نخود خام، پخته و خیس‌اندیش شده در غذای جوجه‌های گوشتی. آبیلین کنگره علوم دامی و آبزیان کشور، دانشگاه نهران.
2. حجی، پ. 1380. استفاده از ضایعات ماکرونی در نگذشته جوجه‌های گوشتی. پایان نامه کارشناسی ارشد علوم دامی، دانشگاه دانشگاهی تبریز.
3. سالم، لیبی، واریه. 1380. یک واحدهای تولدی فعال استان آذربایجان شرقی. اداره صنعتی و بهرهوری سازمان صنایع و معادن، تبریز.
4. حجی، د. 1379. بررسی اثر کاربرد سطوح مختلف ضایعات کارخانجات ماکرونی در نگذشته جوجه‌های گوشتی. پایان نامه کارشناسی ارشد علوم دامی، دانشگاه آزاد اسلامی واحد کرج.
5. پژوهش آماری، ا. پ. سیاه‌پاره، ع. غیبتز، 1378. مجموعه مقاومت سیب‌میوه‌ای ژن‌هایی نگذشته دام و طیور کشور، مؤسسه تحقیقات علوم دامی کشور، کرج.
6. گلین، ا. و. س. صبری، 1375. مطالعه ای از حادثه‌های غذایی طیور (بی‌عیار). واحد آموزشی و پژوهشی معاونت کشاورزی سازمان اقتصادی کشاورزی، نهران.