تعمیم تركیبات شیمیایی و انرژی قابل سوخت و ساز ضایعات کارخانجات ماکارونی
و لپ پاک کنی در سطوح مختلف

عين الله عیدی فرکه

(تاریخ دریافت: ۲۲/۹/۹۵؛ تاریخ پذیرش: ۹۵/۵/۰۶)

چکیده

بر اساس آمار رسمی سازمان صنایع و معاونان در استان آذربایجان شرقی سالهای مقدار ۱۰۰۰ تن ضایعات در کارخانجات تهیه ماکارونی و مقدار ۵۰۰ تن ضایعات در کارخانجات لپ پاک کنی تولید می‌شود. برای تعمیم تركیبات شیمیایی و انرژی قابل سوخت و ساز این ضایعات، ابتدا از ۵۰٪ کارخانجات بر اساس روش نمونه‌گیری تصادفی مختصاتی شده، نمونه برداری به عمل آمد. سپس مقدار ماده خشک، پروتئین، نشیم، اسید‌های اسیدی، سلولار نسبت به نیایش‌های (AOAC) (۱۹۹۰) لازم باشد. در این تحقیق، انتخاب مقدار ضایعات، استفاده از آزمون مناسبی برای گروه ضایعات مورد بررسی قرار گرفت. در هر گروه در ۱۲۷/۰/۲۷–۰/۲/۱۸ درصد و در ضایعات لپ پاک کنی بستگی به ۲۰۰ درصد بود و ۳۰ درصد ضایعات ماکارونی به ۲۰۰ درصد و ۱۵ درصد ضایعات لپ پاک کنی به ۳۰ درصد نسبت به جیره پایه مخاطب شدند. جهت تعمیم میزان انواع انرژی قابل سوخت و ساز (AME)، (TME)، (TME)، (AME)، (AME) اجباری به چهار قطعه خروش بالعکس خورانده شد. میزان ضایعات ماکارونی در سطوح مختلف به ترتیب، ۲۰۱۵، ۲۰۱۵، ۲۰۱۵، ۲۰۱۵، ۲۰۱۵ درصد و میزان ضایعات لپ پاک کنی در سطوح مختلف به ترتیب، ۳۲۰۳، ۳۲۰۳، ۳۲۰۳ درصد بود. بیشترین انرژی قابل سوخت و ساز برای ضایعات ماکارونی در سطح ۲۰ درصد و برای ضایعات لپ پاک کنی در سطح ۱۵ درصد نسبت به جیره پایه بستگی داشت.

واژه‌های کلیدی: انرژی قابل سوخت و ساز، ضایعات ماکارونی، ضایعات لپ پاک کنی

مقدمه

گردد برای انرژی قابل سوخت و ساز (Metabolizable energy)
و تركیبات مواد مغذی آن مشخص گردد. میزان انرژی قابل استفاده مواد خوراکی به دلایل زیر از اهمیت بسیار زیادی در تغذیه طبیعی برخوردار است. اول‌اً؛ انرژی قابل استفاده، بیشترین هزینه جهت تولید غوشت سفید و تخم مرغ را به خود اختصاص می‌دهد.

(۱) کارشناس ارشد مرکز تحقیقات کشاورزی و منابع طبیعی آذربایجان شرقی، تبریز
(۲) مسئول مکاتبات، پست الکترونیکی:
(۳) e_abdi2005@yahoo.com

Downloaded from jstnar.iut.ac.ir at 035 IRST on Sunday December 29th 2019
سالن آزمایشی مقابله بیانگر به دستگاه تهیه مناسب بود و از برآوره‌ی ۱۲ ساعت روش‌شناسی و ۲ ساعت تاریکی استفاده گردید و میزان روش‌شناسی نیز به وسیله دیگر قابل تنظیم بود. برای انجام این تحقیق ۲۸ طبقه خروس لگهورن سفید بالغ، با ناحیه ساده از سویه‌ی های‌رویند (Hy - line) از شرکت پروش سرم تخم‌گذاری خریداری شد و محل اجرای آزمایش انتقال داده شد و در مرحله اصلی آزمایش از ۲۸ طبقه از خروس‌ها که وزن تقریبی بین دو و بیش از ۱۲ کیلوگرم داشتند استفاده گردید.

برای تغذیه ضایعات و سطح مختلف آن‌ها این آزمایش در دور مرهوب انجام گرفت.

برای عادت پذیری خروس‌ها به شرایط محیطی جدید معمولاً ۱۲ ساعت کافی است (۱۶). ولی به دلیل اینکه خروس‌ها مدت زیادی در بستگی گردیده‌اند باید عادت پذیری بهتر آنها به محیط این زمان بیشتر و حدود یک ماه در نظر گرفته شد. در طول مدت عادت پذیری و قبل از انجام مرحله اصلی آزمایش همه خروس‌ها مطابق توسعه NRC برای مرغان تخم‌گذاری با جهت جاری انجام داده شدند. ۲۳ گونه جنگلی (۲ و ۱۲)از لازم به ذکر است که آب نیز در تمام مدت آزمایش به صورت آزاد در اختیار آنها قرار گرفت. فرمول و ترکیبات جهیزه در جدول ۱ ارائه شده است.

بعد از مرحله عادت دهن، ۱۸ طبقه خروس مورد آزمایش به ۷ گروه چهارنفری تقسیم شدند و از دراوشناسی تغذیه کنند. با اینکه در گروه‌های از آزمایش هارتی (Hartley's test) معنی دار بین بیانگرها از آزمایش هارتی (۱۶) ضایعات مکاوژو در ۵ نسبت (۵, ۷/۵, ۶/۵, ۵/۵ و ۴/۵ درصد) و ضایعات با پاکت در ۴ نسبت (۱۵, ۲۵, ۳۰ و ۴۰ درصد) با جهیده مخالط شده و سپس تغذیه شدند. قبل از شروع تغذیه مقدار خوراکی بیشتر با توزیع دیجینالی با حساسیت /۰/۱ گرم هر توزین در داخل سفالگری طرفی در مسیر دانه‌هایش شد و مولتی خوراکی مورد آزمایش قبل از مخلوط شدن با جهیده پاکت آسیاب انجام شد و سپس در نسبت ۵۰/۵۰ درصد شد. با خوراکی پاکت کاملاً مخلوط گردیده و در نهایت مجموع جهیده پاکت و ماده خوراکی ثانوی: مصرف خوراک جز بند، انتخاب راه‌های مکاکی بنا بر آزمایش‌های مطرح طیور یک نیاز ضروری و مهم جهت بهبود آن‌ها است (۱۵). بنابراین اهمیت تعیین دقیق انرژی مواد خوراکی در تغذیه‌ی جهیده طیور به‌خوبی روشن می‌گردد. مطالعه‌های گذشته ارزیابی شیمیایی یک خوراک در مقایسه قابلیت نیروی سخت و ساز مداد خوراکی آزمایش‌های بیولوژیکی انجام شود (۱۲).

در کشور ما تاکنون پژوهش‌هایی جامع و کامل در مورد ضایعات کارخانجات ماکاوژو صورت نگرفته است. هر چند مطالعات اندکی در مورد ضایعات ماکاوژو یک کارخانه در دانشگاه‌های امتدادی گوشته و پژوهشگران باید انجام‌پذیر است. هدف از اجرای این آزمایش تغذیه انرژی قابل سوخت و ساز و ترکیبات شیمیایی ضایعات ماکاوژو و ضایعات به‌کمک جهیزه در تغذیه طیور و همچنین تعیین انرژی قابل سوخت و ساز ضایعات ماکاوژو و ضایعات به‌کمک در سطوح مختلف با استفاده از معادلات رگرسیون بود.

مواد و روش‌ها

برای انجام این آزمایش ابتدا از سال‌های منابع و معاون‌های آزمایش‌کاری شرکت کارخانجات تهیه ماکاوژو موجود در استان تسرپ گردید که در این لیست‌ها طرفیت و شکل‌کرده این کارخانجات نیز گزارش شده بود. به ۱۰ درصد این کارخانجات مراجعه گردید و بر اساس روش نمونه برداری تصادفی طبقه‌بندی نمونه برداری انجام پذیرفت. نمونه‌های جمع آوری شده به طور جدایی آسان مخلوط گردیدند. از نمونه‌های جمع آوری شده تا نهایی نمونه به‌دبست آماد. این تحقیق در آزمایش‌های مشابهی طیور، واقع در مزرعه آموزشی پرورش طیور واقع در روستای آری‌آباد سی مجمع عالی‌جهرم کشاورزی استان آذربایجان شرقی انجام گرفت.

۳۵۰
جدول ۱. فرمول و ترکیبات جیره‌پایه

درصد

<table>
<thead>
<tr>
<th>ماده خوراکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>ذرت</td>
</tr>
<tr>
<td>کنجکال سویا</td>
</tr>
<tr>
<td>پودر استخوان</td>
</tr>
<tr>
<td>مکمل ویتامینی</td>
</tr>
<tr>
<td>مکمل معدنی</td>
</tr>
<tr>
<td>نمک</td>
</tr>
<tr>
<td>میوتین</td>
</tr>
<tr>
<td>میوتین</td>
</tr>
</tbody>
</table>

انرژی و مواد مغذی موجود در جیره‌پایه

انرژیقابلمتابولیسم(کیلوکالریبرکیلوگرم)

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>پروتئین خام(%)</td>
</tr>
<tr>
<td>چربی خام(%)</td>
</tr>
<tr>
<td>الیاف خام(%)</td>
</tr>
<tr>
<td>کلسیم(%)</td>
</tr>
<tr>
<td>فسفرقابلاستفاده(%)</td>
</tr>
<tr>
<td>آنزیم نیت(%)</td>
</tr>
<tr>
<td>میوتین(%)</td>
</tr>
<tr>
<td>میوتین+میوتین(%)</td>
</tr>
</tbody>
</table>

مورد آزمایش ۳۰ گرم بود.

از ۲۸ قطعه خروس، یک گروه چهار تایی به عنوان شاهد تا آخر آزمایش گرنشدند و یک گروه چهار تایی جیره‌پایه را دریافت کردند و هر جیره نیز به ۴ قطعه از خروس‌ها خورانده شد. به‌دنبال دوره عادت پذیری، در هر آزمایش ۲۴ ساعت گرنسگی برا خروس‌ها در نظر گرفته شد. هدف از این اقدام تخلیه کامل دستگاه گوارش از خروس‌ها بود. سپس تعادلی انجام شد و فضای خروس‌ها بین آنها ۲۴ ساعت جمع آوری گردید. به‌طور افتراضی زمان اختصاص داده شده برای هر آزمایش ۴ ساعت بود در دوره استراحت بین دو آزمایش نیز خروس‌ها به جیره‌پایه تغذیه شدند (۱۴).

پس از تعادلی انجامی، خروس‌ها به فسیل‌های شماره گذاری شده ۳۵۱
شدن تا رطوبت فضولات که هنگام جمع آوری مرطوب بودن گرفته شده بودن تریب درصد ماده خشک فضولات نیز به دست آمد (16) سپس فضولات به وسیله آسیاب آزمایشگاهی با برای یک میلی متر آسیاب شدن و تهیه‌ها به داخل قوطی‌های کوچک پلاستیکی استفاده که بیندین منظور خردداری شده بودند. ریختن شدن و شماره خروس روز قوطی مرطوبه نیز شد از این تهیه‌ها برای انجام آزمایش‌ها استفاده گردید.

تجزیه قربانی مواد خوراکی و فضولات طبق روش‌های
که توصیف شده که برای تعیین انرژی خام، از دستگاه‌های مشابه که توصیف شده که برای تعیین انرژی خام از دستگاه می‌باشد. فناوری‌ها و تحقیقاتی‌های تغذیه دام در کشور علوم دام‌شناختی تبیین استفاده شد. ماده خشک
به دست آمد. گام‌های نمونه به استفاده از کوره‌های شکل‌دهنده
درجه حرارت 550 درجه سانتی‌گراد 100 برای اندازه‌گیری الاف، دیواره سولوی و
دبی سولوی بدون همی سولوی از دستگاه به کاربرد می‌باشد.
بایستی اضافه شدن به جیره مخلوط

شامل افزایش میزان ضایعات به جیره

نتایج و بحث

غلظت مواد مجذب اندازه‌گیری شده در ضایعات ماکاروتی
در جدول 2 گزارش شده است. ضایعات ماکاروتی در مقایسه
با دانه گندم طبق جدول (NRC) ماده خشک و
پروتئین خام بیشتری همی‌چنین خاکستر خام و الاف خام
کمتری داشت.

\[
\text{TME}_{n} = \text{AME}_{n} + \frac{\text{EEL} + \lambda / \sqrt{r} \times \text{NR}}{\text{Fi}} \tag{1}
\]

\[
\text{AME} = \frac{\text{GE}_{r} - \text{GE}_{f}}{\text{Fi}} \tag{2}
\]

\[
\text{AME}_{n} = \frac{\lambda / \sqrt{r} \times \text{NR}}{\text{Fi}} \tag{3}
\]

\[
\text{NR} = \text{N}_{c} - \text{N}_{e} \tag{4}
\]

\[
\text{TME} = \text{AME} + \frac{\text{EEL}}{\text{Fi}} \tag{5}
\]
تهیه ترکیبات شیمیایی و انزیم قابل سولفات و ساز ضایعات کارخانجات...

معنی‌داری دارند (۵/۰<0/۰) بیشترین انرژی زمینی به‌دست آمده است که ضایعات ماکارونی در سطح ۳۰ درصد نسبت به جبره با هنگام کارگردانی شده در هر کن اندازه معنی‌داری بین سطح ۳۰ تا ۷۵ و ۹۰ درصد مشاهده گردید. کمترین انرژی در سطح ۲۵ درصد مشاهده گردید. این امر می‌تواند نشان از اثر تداخل مابین ضایعات ماکارونی و خوراک‌های پاشیده به‌نظر می‌رسد. این تأثیرات ناشی از تغییر ویسکوزیتی مواد خوراکی در دستگاه گوارش و تغییر سرعت عبور و تعداد زمان ماندگاری خوراک در دستگاه گوارش باشد.

در خوراک‌های دارای تمادی ضایعات، مقدار انرژی قابل متداوله‌ای به‌صورت تحقیق شده برای نیترورزن بی‌اری از انرژی مقدار متداوله‌ی ظاهری و مقدار انرژی قابل متداوله‌ی حقیقی تحقیق شده برای نیترورزن کمتر از انرژی قابل متداوله‌ی حقیقی بود.

AUGE در سایر آزمایش‌های داده شده توسط AME و AMEn که تعادل نیتروزون مفیدی باشد که به‌صورت تحقیق صورت گرفته توسط TME بیشترین انرژی قابل ضایعات ماکارونی را می‌کرد. در این آزمون، شرایط، مقدار مطلق ضایعات ماکارونی به‌صورت تحقیق معنی‌داری برقراری شد. با توجه به اینکه مقدار ضایعات ماکارونی از قسمت مغز گیاهی به‌صورت آماده و در تهیه آن سبک‌های ضایعات ماکارونی با هم جبره‌ای بوده که برای اثر تحقیق در سطح ضایعات ماکارونی بی‌اری به‌صورت خیاط افزایش یافته، به‌طور کلی، برای انرژی برای ضایعات ماکارونی به‌صورت تحقیق ۱۰۰ درصد ضایعات ماکارونی بود و کمترین انرژی مربوط به جبره‌ای حاصل شد.

در تحقیق دیگری که در آن آزمایش‌ها ضایعات ماکارونی در تغذیه به‌ ذخیره بودن قرار گرفتند که در کاردک ۴۳۰۰ کیلوگرمی در خوراک ۱۰۰ درصد آماده و در تهیه مقدار ضایعات ماکارونی به‌صورت تحقیق دیگری که در آن آزمایش‌ها ضایعات ماکارونی در تغذیه به‌ ذخیره بودن قرار گرفتند که در کاردک ۴۳۰۰ کیلوگرمی در خوراک ۱۰۰ درصد آماده و در تهیه مقدار ضایعات ماکارونی به‌صورت تحقیق دیگری که در آن آزمایش‌ها ضایعات ماکارونی در تغذیه به‌ ذخیره بودن قرار گرفتند که در کاردک ۴۳۰۰ کیلوگرمی در خوراک ۱۰۰ درصد آماده و در تهیه مقدار ضایعات ماکارونی به‌صورت تحقیق دیگری که در آن آزمایش‌ها ضایعات ماکارونی در تغذیه به‌ ذخیره بودن قرار گرفتند که در کاردک ۴۳۰۰ کیلوگرمی در خوراک ۱۰۰ درصد آماده و در تهیه مقدار ضایعات ماکارونی به‌صورت تحقیق دیگری که در آن آزمایش‌ها ضایعات ماکارونی در تغذیه به‌ ذخیره بودن قرار گرفتند که در کاردک ۴۳۰۰ کیلوگرمی در خوراک ۱۰۰ درصد آماده و در تهیه مقدار ضایعات ماکارونی به‌صورت تحقیق دیگری که در آن آزمایش‌ها ضایعات ماکارونی در تغذیه به‌ ذخیره بودن قرار گرفتند که در کاردک ۴۳۰۰ کیلوگرمی در خوراک ۱۰۰ درصد آماده و در تهیه مقدار ضایعات ماکارونی به‌صورت تحقیق دیگری که در آن آزمایش‌ها ضایعات ماکارونی در تغذیه به‌ ذخیره بودن قرار گرفتند که در کاردک ۴۳۰۰ کیلوگرمی در خوراک ۱۰۰ درصد آماده و در تهیه مقدار ضایعات ماکارونی به‌صورت تحقیق دیگری که در آن آزمایش‌ها ضایعات ماکارونی در تغذیه به‌ ذخیره بودن قرار گرفتند که در کاردک ۴۳۰۰ کیلوگرمی در خوراک ۱۰۰ درصد آماده و در تهیه مقدار ضایعات ماکارونی به‌صورت تحقیق دیگری که در آن آزمایش‌ها ضایعات ماکارونی در تغذیه به‌ ذخیره بودن C353
جدول ۲. ترکیب مواد مغذی ضایعات غذایی مورد آزمایش

| کیلوگرم | دیواره سلولی بنونه | همی سالون (NDF) | عصاره عاری از (NEF) | نیتروژن خام | جیره | صابعات | شکر | خام | پروتئین | بروکسین | دیگر | ظاهار | تعداد | به آسانی درهم شدن
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲۴/۴</td>
<td>۹/۸</td>
<td>۱۴/۴</td>
<td>۹/۸</td>
<td></td>
</tr>
</tbody>
</table>

۱- Nitrogen Free Extract ۲- Neutral Detergent Fiber ۳- Acid Detergent Fiber

وچره پایه (کیلوگرم به کیلوگرم)

جدول ۳. مقایسه میانگین انواع اثر قابل منافع دیگری حاوی مقدار منفی ضایعات ماکارونی

<table>
<thead>
<tr>
<th></th>
<th>AMEn</th>
<th>MEn</th>
<th>TME</th>
<th>TMEn</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲۴/۴</td>
<td>۹/۸</td>
<td>۱۴/۴</td>
<td>۹/۸</td>
<td>SEM</td>
</tr>
</tbody>
</table>

در هر ستو، آزمایش که در کاراوتی هستند، اختلاف معنی‌داری دارند (P<0.۰۵).

۱- انرژی قابل سوخت و ساز ظاهری = AMEn

۲- انرژی قابل سوخت و ساز حقیقی = TMEn

۳- میانگین ± خطای معیار
جدول 2: مقایسه بین‌گیری انواع انرژی قابل متا‌پلی‌سیم ضایعات ماکاروئی در سطوح مختلف (کیلولاری در هر کیلوگرم)

<table>
<thead>
<tr>
<th>TME<sub>n</sub></th>
<th>TME</th>
<th>AME<sub>n</sub></th>
<th>AME</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 ± 11</td>
<td>318 ± 15</td>
<td>285 ± 11</td>
<td>0</td>
</tr>
<tr>
<td>340 ± 14</td>
<td>359 ± 24</td>
<td>321 ± 20</td>
<td>15</td>
</tr>
<tr>
<td>200 ± 55</td>
<td>233 ± 32</td>
<td>289 ± 22</td>
<td>30</td>
</tr>
<tr>
<td>300 ± 20</td>
<td>384 ± 28</td>
<td>351 ± 28</td>
<td>45</td>
</tr>
<tr>
<td>240 ± 28</td>
<td>312 ± 28</td>
<td>368 ± 9</td>
<td>60</td>
</tr>
<tr>
<td>300 ± 28</td>
<td>390 ± 37</td>
<td>359 ± 27</td>
<td>75</td>
</tr>
<tr>
<td>200 ± 19</td>
<td>396 ± 39</td>
<td>361 ± 39</td>
<td>90</td>
</tr>
<tr>
<td>184</td>
<td>156</td>
<td>184</td>
<td>156</td>
</tr>
</tbody>
</table>

SEM

1. میانگین ± نقطه معیار

در هر سمت، اعدادی که حروف مشابه ندارند دارای اختلاف معنی‌داری می‌باشند (P<0.05).

نسبت ضایعات ماکاروئی به خوراک پایه (درصد)

برنده مورد آزمایش باند اکثر چه سپیدالبا آزمایش‌روی خرده‌های گندم بین خروس‌های بالغ و بقولمون تفاوت می‌نماید. نتایج این این اثبات به نظر می‌رسد، دلیل تفاوت بین TME معنی‌داری نیافته است. به نظر می‌رسد، دلیل تفاوت بین TME و TME_n در تحقیق حاضر و بقولمون می‌تواند ناشی از مواد خام مورد استفاده در تهیه ماکاروئی از قبیل نوع آرد گندم با وجود فردیت‌ها در ماکاروئی مورد استفاده در مطالعه مذکور باند. علاوه بر این نحوه زمان‌افزایش ماکاروئی و فن آوری به کار رفته در آن نتیجه پاندان در این تفاوت دخیل نبود.

امامی نسبت ضایعات ماکاروئی به ترتیب AME_n و AME در جدول 2 و 3503 کیلوگرم کرنش کرده که از نتایج به دست آمده در این تحقیق اندکی کمتر می‌باشد. با توجه به این اثبات، تفاوت ضایعات ماکاروئی در آزمایش‌روی کمتر می‌باشد. بنابراین با وجود تفاوت بین نسبت یک می‌توان انتظار است که انرژی قابل متا‌پلی‌سیم آن کمتر بود.

در جدول 5، روابط بین سطوح مختلف ضایعات ماکاروئی در جیره پایه (X) با میزان انرژی قابل متا‌پلی‌سیم مخلوط

چرخ پایه و ضایعات ماکاروئی (Y) ارائه شده است. انواع انرژی قابل سوخت و ساز جیره‌های حاوی مفادی

355
جدول 5. روابط بین سطح مختلف ضایعات ماکارونی در جیره پایه (X) با میزان انرژی قابل سوخت و ساز مخلوط جیره پایه و ضایعات ماکارونی (Y)

<table>
<thead>
<tr>
<th>انرژی قابل سوخت و ساز ضایعات ماکارونی (X=100) (کیلوکالری در کیلوگرم)</th>
<th>ضریب نسبت (R²)</th>
<th>انواع انرژی قابل سوخت و ساز ضایعات ماکارونی</th>
<th>AME</th>
<th>AMEₙ</th>
<th>TME</th>
<th>TMEₙ</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>3680</td>
<td>0.96</td>
<td>Y=۲۹۱۱۰+0/۸۴X</td>
<td>AME</td>
<td>AMEₙ</td>
<td>TME</td>
<td>TMEₙ</td>
<td>SEM</td>
</tr>
<tr>
<td>3758</td>
<td>0.96</td>
<td>Y=۲۹۸۴۴+0/۷۷X</td>
<td>AME</td>
<td>AMEₙ</td>
<td>TME</td>
<td>TMEₙ</td>
<td>SEM</td>
</tr>
<tr>
<td>4013</td>
<td>0.94</td>
<td>Y=3۲۰۹۶+0/۴X</td>
<td>AME</td>
<td>AMEₙ</td>
<td>TME</td>
<td>TMEₙ</td>
<td>SEM</td>
</tr>
<tr>
<td>3892</td>
<td>0.96</td>
<td>Y=۲۹۰۷۵+0/۸۹X</td>
<td>AME</td>
<td>AMEₙ</td>
<td>TME</td>
<td>TMEₙ</td>
<td>SEM</td>
</tr>
</tbody>
</table>

جدول 6. مقایسه میانگین انرژی قابل سوخت و ساز جیره‌های حاصل مقدار مفاهیم ضایعات به پاک‌کنی جیره پایه

<table>
<thead>
<tr>
<th>TMEₙ</th>
<th>TME</th>
<th>AMEₙ</th>
<th>AME</th>
<th>نسبت ضایعات به پاک‌کنی</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰۲۰±۱۱</td>
<td>۳۱۸۰±۵۰</td>
<td>۲۹۱۱۰±۰/۸۴</td>
<td>۲۹۸۴۴±۰/۷۷</td>
<td>۲۹۱۱۰±۰/۸۴</td>
<td>۲۹۰۷۵±۰/۸۹</td>
</tr>
<tr>
<td>۳۰۲۰±۱۱</td>
<td>۳۱۸۰±۵۰</td>
<td>۲۹۱۱۰±۰/۸۴</td>
<td>۲۹۸۴۴±۰/۷۷</td>
<td>۲۹۱۱۰±۰/۸۴</td>
<td>۲۹۰۷۵±۰/۸۹</td>
</tr>
<tr>
<td>۳۰۶۶±۵۵</td>
<td>۳۱۹۶±۵۵</td>
<td>۲۹۱۱۰±۰/۸۴</td>
<td>۲۹۸۴۴±۰/۷۷</td>
<td>۲۹۱۱۰±۰/۸۴</td>
<td>۲۹۰۷۵±۰/۸۹</td>
</tr>
<tr>
<td>۲۹۳۵±۴۱</td>
<td>۲۹۳۵±۴۱</td>
<td>۲۹۱۱۰±۰/۸۴</td>
<td>۲۹۸۴۴±۰/۷۷</td>
<td>۲۹۱۱۰±۰/۸۴</td>
<td>۲۹۰۷۵±۰/۸۹</td>
</tr>
<tr>
<td>۲۵</td>
<td>۲۵</td>
<td>۲۵</td>
<td>۲۵</td>
<td>۲۵</td>
<td>۲۵</td>
</tr>
</tbody>
</table>

* میانگین ± خطای معیار

در هر ستون آماری که دارای حروف مقاومت هستند اختلاف معنی‌دار دارد (P<0.05).
جدول 7 مقایسه میانگین انواع ارزی قابل سوخت و ساز ضایعات لیه‌پاک‌کنی در سطوح مختلف (کیلوکالری بر کیلوگرم)

<table>
<thead>
<tr>
<th></th>
<th>TME<sub>n</sub></th>
<th>TME</th>
<th>AME<sub>n</sub></th>
<th>AME</th>
</tr>
</thead>
<tbody>
<tr>
<td>پاک‌کنی</td>
<td>2678 ± 32</td>
<td>2678 ± 32</td>
<td>2478 ± 32</td>
<td>2478 ± 32</td>
</tr>
<tr>
<td>پاک‌کنی</td>
<td>2785 ± 31</td>
<td>2785 ± 31</td>
<td>2585 ± 31</td>
<td>2585 ± 31</td>
</tr>
</tbody>
</table>

1. میانگین ± خطای معیار

در هر ستون ارقامی که دارای حرکت متفاوتی هستند، اختلاف معنی داری دارند (P<0.05).

بیشترین تکثیری شیمیایی و انرژی قابل سوخت و ساز ضایعات کارخانجات...