تعیین کارایی فنی و نسبت شکاف تکنولوژی در واحدهای تولید شهر در ایران.
مطالعه موردی: استان‌های آذربایجان شرقی، اصفهان، تهران، خراسان، فارس و یزد
(کاربرد روش فرآمزی)
منصور زیباei و مريم جعفری فتحی
(تاریخ دریافت: 1385/9/26، تاریخ پذیرش: 1386/2/10)
چکیده
مقدمه
از آنجا که شهر و فرآورده‌های لینی از جمله بهترین منابع ناحیه
پررویت و کلیسی محصول می‌شود، در تمامی نقاط دنیا، در
زمینه تولید، تجارب و مصرف بهبهان آن، سرمایه‌گذاری قابل
توجه صورت می‌گیرد (1). در ایران نیز با توجه به رشد
جمعیت شهر و افزایش تقاضا برای شهر و فرآورده‌های آن,
میزان تولید شهر افزایش یافته است به گونه‌ای که در حال

1. به ترتیب استادیار و دانشجوی سابق کارشناسی ارشد، اقتصاد کشاورزی، دانشگاه کشاورزی، دانشگاه شیراز
Zibaei@ShirazU.ac.ir

2. مسئول مکاتبات، پست الکترونیکی:
Data Envelopment Analysis (DEA)  
تحلیل فراگیرگی داده‌ها

محموب می‌شود که در این مطالعه به آن پرداخته شده است. از طریق تعیین تابع تولید مرزی منطقه‌ای می‌توان، شکاف موجود بین بهترین تولید کننده و ساپور تولید کننگ را تعیین نمود تا مشخص گردد که از طریق چه گونه این شکاف نیازمندی فعالیت‌ها ترویجی به چه میزان می‌توان تولید افزایش داد. اما هرچند کارایی فنی و اقتصادی که براساس یک تابع تولید مرزی تعیین گردهادن، قابل مقایسه می‌باشد اما برای واحدهایی که تحت تکنولوژی‌های متغیر فعالیت‌شان موجود بوده، این مقایسه معیار تمایل نمی‌باشد. چنین مشکلی زمانی می‌باشد که واقعیت می‌پویند.  

مواد و روشهای تابع فرامرزی، بوخشی از نقاط تولیدی به کارایی بالا در مناطق مختلف است. مفهوم تابع فرامرزی، جایگزین این دلیل که بر این فرض ساده است که گیلان تولید کننگان در گروه‌های مختلف (کشورها، مناطق و غیره) بنابراین و دستیابی به یک تکنولوژی کسانی را دارد (12). اگر فرض سطح تکنولوژی سطحی در زمان است، آنگاه آنچه که به عنوان تکنولوژیی در واحدهای تولیدی به کار گرفته می‌شود در واقع اجزای تکنولوژی کلی می‌باشند. بنابراین، مناطق تکنولوژی به عنوان تأمینی از تکنولوژی‌های که کار گرفته شده در کلیه واحدهای تولیدی تعیین می‌شود. به عنوان مثال، اگر محصول یک تولید از استفاده از برد گرفته‌هایی در هر واحد (سطح تکنولوژی) تولید شود، فرض می‌شود که 

$T^* = \{ (x,y): x \geq 0 \}$

به صورت زیر تعریف می‌شود (31) و (32):

$T^* = \{ (x,y): x \geq 0 \}$

به طوری که $x$ می‌تواند محدود باشد در حداکثر در یک سطح تکنولوژی تولید کننگ.

از تعریف فوق معلوم می‌شود که مجموعه تکنولوژی‌های واحدهای $T^*$ زیر مجموعه‌ای از مناطق تکنولوژی $T^*$ می‌باشد.

اکر (13) نیما نامی‌نگر تولید فاصله‌ای سناده $D^*_{(x,y)}$ و بهره‌های با استفاده از تکنولوژی $T^*$ پایین، با استفاده از تعریف مناطق تکنولوژی می‌توان به نتایج زیر دست داد کرد:

نتیجه‌شماره 1: برای هر واحد مفروض $k$
شکاف‌های نهاده‌گرها
کارایی فنی نهاده‌گرها (67) با توجه به تکنولوژی واحده
به صورت زیر تعیین می‌شود (23 و 25):

\[
TE_k(x, y) = D_s(x, y) \sum_{i=1}^{K} \frac{1}{D_i(x, y)}
\]

توجه شماره 2: برای هر واحد مفروض \( k \)

\[
D_k(x, y) \geq D_s(x, y), \quad k = 1, \ldots, K
\]

\[
D_k(x, y) \geq D^*_s(x, y), \quad k = 1, \ldots, K
\]

این تایپ از آنجا ناشی می‌شود که مجموعه‌های نهاده و سعاده‌برای هر واحد تولیدی زیرمجموعه‌ای از مجموعه‌های منطقی به‌شمار می‌رود. شکل زیر تابع فرازی و توابع مزرعه‌ای مربی را برای واحدهای تولیدی نشان می‌دهد. فرض می‌شود واحدهای تولیدی مخصصها را با استفاده از نهایی یک نهاده \( x \) و سطح مختلف تکنولوژی تولید می‌کند. تعدادی از واحدها با تکنولوژی 1 تعدادی با تکنولوژی 2 و بقیه با تکنولوژی 3 به تولید مشغول است. بنابراین برای هر سطح از تکنولوژی می‌توان یک تابع مزرعه مشخص نمود که به منظور اندازه‌گیری کارایی واحدها با آن سنجیده می‌شود (شکل 1).

به عبارت دیگر برای هر گروه از واحدها که یک سطح از تکنولوژی فعالیت می‌کند می‌توان یک تابع مزرعه تعیین نمود که می‌توان مقایسه واحدهای مذکور با یکدیگر باند. تابع فرازی در حقیقت بالاترین سطح به کاربرکی تکنولوژی در واحدها را در بر می‌گیرد. تابع یک و در نهایت می‌دهد که هرگاه یک تابعی و عدم تست‌های واضح مشاهده شود، می‌توان شکاف تکنولوژی واحدها را با کمک منطق‌های تولید به‌دست آورد. به‌دین منظره می‌توان از شاخه‌های سطح‌گرها (Input Oriented Measures) استفاده نمود. در اینجا شاخه نهاده‌گرا به منظور به‌دست آوردن شکاف تکنولوژی واحدها تولیدی تشخیص می‌شود.

شکاف‌های نهاده‌گرا
کارایی فنی نهاده‌گرها (67) با توجه به تکنولوژی واحده
به صورت زیر تعیین می‌شود (23 و 25):

\[
TE_k(x, y) = D_s(x, y) \sum_{i=1}^{K} \frac{1}{D_i(x, y)}
\]

توجه شماره 2: برای هر واحد مفروض \( k \)

\[
D_k(x, y) \geq D_s(x, y), \quad k = 1, \ldots, K
\]

\[
D_k(x, y) \geq D^*_s(x, y), \quad k = 1, \ldots, K
\]

این تایپ از آنجا ناشی می‌شود که مجموعه‌های نهاده و سعاده‌برای هر واحد تولیدی زیرمجموعه‌ای از مجموعه‌های منطقی به‌شمار می‌رود. شکل زیر تابع فرازی و توابع مزرعه‌ای مربی را برای واحدهای تولیدی نشان می‌دهد. فرض می‌شود واحدهای تولیدی مخصوصا را با استفاده از نهایی یک نهاده \( x \) و سطح مختلف تکنولوژی تولید می‌کند. تعدادی از واحدها با تکنولوژی 1 تعدادی با تکنولوژی 2 و بقیه با تکنولوژی 3 به تولید مشغول است. بنابراین برای هر سطح از تکنولوژی می‌توان یک تابع مزرعه مشخص نمود که به منظور اندازه‌گیری کارایی

واحدها با آن سنجیده می‌شود (شکل 1).

به عبارت دیگر برای هر گروه از واحدها که یک سطح از تکنولوژی فعالیت می‌کند می‌توان یک تابع مزرعه تعیین نمود که می‌توان مقایسه واحدهای مذکور با یکدیگر باند. تابع فرازی در حقیقت بالاترین سطح به کاربرکی تکنولوژی در واحدها را در بر می‌گیرد. تابع یک و در نهایت می‌دهد که هرگاه یک تابعی و عدم تست‌های واضح مشاهده شود، می‌توان شکاف تکنولوژی واحدها را با کمک منطق‌های تولید به‌دست آورد. به‌دین منظره می‌توان از شاخه‌های سطح‌گرها (Input Oriented Measures) استفاده نمود. در اینجا شاخه نهاده‌گرا به منظور به‌دست آوردن شکاف تکنولوژی واحدها تولیدی تشخیص می‌شود.

شکاف‌های نهاده‌گرا
کارایی فنی نهاده‌گرها (67) با توجه به تکنولوژی واحده
به صورت زیر تعیین می‌شود (23 و 25):

\[
TE_k(x, y) = D_s(x, y) \sum_{i=1}^{K} \frac{1}{D_i(x, y)}
\]

توجه شماره 2: برای هر واحد مفروض \( k \)

\[
D_k(x, y) \geq D_s(x, y), \quad k = 1, \ldots, K
\]

\[
D_k(x, y) \geq D^*_s(x, y), \quad k = 1, \ldots, K
\]
کارایی فنی برای امین واحد و بردار $L$ نشان دهنده اطلاعات برای جفت‌ها در فنین واحد ناکارده می‌باشد (8 و 5).

تابع فرامرزی

تابع فرامرزی بر اساس مدل DEA برای تعیین رتبه‌دهی به کمک تکنولوژی سازه‌ها می‌باشد. از آنجا که تابعها واحدها در تمامی سطوح تکنولوژی سازه‌ها L = $\sum_{k} L_k$ به‌عنوان مدل برنامه‌ریزی خطی (LP) (در صورت اینکه تکنولوژی با ناکارده می‌باشد (23)، در (25) می‌باشد: 

$$\text{Max } \phi^* = \phi^*, \quad \text{st: } -\phi^* y_i + Y^\star \lambda^* = \geq 0 \quad \forall \lambda^* \geq 0, \quad \lambda_i = 1, \quad \text{بردار } M \times 1$$

$$x_i - x_i^* \lambda^* = \geq 0 \quad \forall \lambda^* \geq 0, \quad \lambda_i = 1, \quad \text{بردار } N \times 1$$

$$\text{که در آن: }$$

- $M$ بردار مقدار ستاده برای $x_i$ می‌باشد.
- $N$ بردار مقدار نهایی برای $x_i$ می‌باشد.

از اینکه T، مشخص $\phi^*$ به رنگ‌ها و $\lambda^*$ به رنگ‌های خاصی (LP) نشان داده می‌شود و این به جای هم‌ارزی با تابع مرزی برای هر سطح تکنولوژی، احتمالاً را که در زمانی نشان دهد که تابع فرامرزی استفاده می‌شود.

تأکید می‌شود که در این تابع از مطالعات مشاهده شد. در تعداد گزارش‌های تعدادی با کارگران شده، تعداد نیروی کار، فرآیندهای سازنده، میزان کرسی‌های مصرفی و سوخت در کارگاه‌های صنعتی استاندارد آزمایشگاه‌های با پارامتر $\phi$ و $\lambda$ را ایجاد می‌کند. بردار $\phi$ نشان دهنده میزان مزدیر

شکل 1. الگوی تابع فرامرزی و توابع مرزی در سطوح مختلف تکنولوژی

از تابع مشاهده در برای امین واحد در تمامی سطوح تکنولوژی با ناکارده می‌باشد (23).

مرز تولید برای سطح تکنولوژی

اگر سطح $L_k$ شامل داده‌های $L_k$ واحد تولیدی باشد، مسئله برنامه‌ریزی خطی مدل DEA در امین واحد تولیدی به صورت زیر می‌باشد (23).

$$\text{Max } \phi, \quad \text{st: } -\phi y_i + Y \lambda = \geq 0 \quad \forall \lambda \geq 0, \quad \lambda = 1, \quad \text{بردار } M \times 1$$

$$x_i - x_i \lambda = \geq 0 \quad \forall \lambda \geq 0, \quad \lambda = 1, \quad \text{بردار } N \times 1$$

$$\text{که در آن: }$$

- $M$ بردار مقدار ستاده برای $x_i$ می‌باشد.
- $N$ بردار مقدار نهایی برای $x_i$ می‌باشد.

از اینکه T، مشخص $\phi$ به رنگ‌ها و $\lambda$ به رنگ‌های خاصی (LP) نشان داده می‌شود و این به جای هم‌ارزی با تابع مرزی برای هر سطح تکنولوژی، احتمالاً را که در زمانی نشان دهد که تابع فرامرزی استفاده می‌شود.

تأکید می‌شود که در این تابع از مطالعات مشاهده شد. در تعداد گزارش‌های تعدادی با کارگران شده، تعداد نیروی کار، فرآیندهای سازنده، میزان کرسی‌های مصرفی و سوخت در کارگاه‌های صنعتی استاندارد آزمایشگاه‌های با پارامتر $\phi$ و $\lambda$ را ایجاد می‌کند. بردار $\phi$ نشان دهنده میزان

318
نتایج و بحث

جدول 1: متوسط تولید شیر به ازای هر رأس گاو شیرده و متوسط نهاده‌ی مصرفی را به ازای هر تن شیر تولیدی در استان‌های مورد مطالعه نشان می‌دهد. همان‌گونه که ملاحظه می‌گردد از نظر میزان مصرف شیر به ازای هر رأس گاو شیرده، استان‌های تهران، خراسان وفارس، نسبت به استان‌های آذربایجان شرقی با میانگین تولید 4/503 تن شیر به ازای هر رأس گاو شیرده در پایین‌تر مرتبه قرار دارد. کمترین میزان میانگین کنسانسرهای مصرفی به ازای هر تن شیر تولیدی به ترتیب در استان‌های آذربایجان شرقی و خراسان است. در استان‌های تهران و آذربایجان شرقی از نظر اختلاف معناداری وجود دارد که کاربردی نشان داد که از نظر نسبی معیار بین استان‌های تهران و آذربایجان شرقی و بین و نسبت به استان‌های خراسان و اصفهان نیز در سطح کمتر از 0/5 محسوب می‌شود. است. سایر اختلاف‌ها معیار دار نمی‌باشد.

نتایج حاصل از تخمین و اجرای تولید شیرت توسط DEA را در جدول 3 نشان داده شده است. همان‌گونه که ملاحظه می‌گردد میانگین کارایی فین‌ها تخمین تابع تولیدی مزیت منطقه‌ای از نظر میزان تولید شیر به ازای هر تن شیر تولیدی در استان‌های آذربایجان شرقی 0/802 تنی باشد. همان‌گونه که از حداکثر 0/794 تنداز و انحراف معیار آن برای 0/278 است. همچنین یافته‌ها از نظر ارائه تولیدی شیر به ازای هر تن شیر تولیدی نیز در استان‌های تهران، خراسان و آذربایجان شرقی به ترتیب با 1/795 و 2/319 می‌باشد.
جدول 1. میزان مصرف سوخت به ارزای هر رأس گاو شیرده و میزان تولید شیر در استان‌های مورد بررسی

<table>
<thead>
<tr>
<th>استانها</th>
<th>میزان مصرف سوخت به ارزای هر رأس گاو شیرده (ریال)</th>
<th>متوسط تولید شیر به ارزای هر تن شیر (تن)</th>
<th>متوسط کنسانتره مصرفی (تن)</th>
<th>میزان تولید شیر به ارزای هر تن شیر (تن)</th>
</tr>
</thead>
<tbody>
<tr>
<td>آذربایجان غربی</td>
<td>۷/۹۸۱</td>
<td>۱/۹۸۱</td>
<td>۱/۹۸۱</td>
<td>۱/۹۸۱</td>
</tr>
<tr>
<td>اصفهان</td>
<td>۵/۰۰۶</td>
<td>۱/۴۷۸</td>
<td>۱/۴۷۸</td>
<td>۱/۴۷۸</td>
</tr>
<tr>
<td>تهران</td>
<td>۶/۲۰۵</td>
<td>۱/۲۸۰</td>
<td>۱/۲۸۰</td>
<td>۱/۲۸۰</td>
</tr>
<tr>
<td>خراسان</td>
<td>۵/۵۳۳</td>
<td>۲/۳۹۵</td>
<td>۲/۳۹۵</td>
<td>۲/۳۹۵</td>
</tr>
<tr>
<td>فارس</td>
<td>۵/۳۶۴</td>
<td>۲/۵۸۲</td>
<td>۲/۵۸۲</td>
<td>۲/۵۸۲</td>
</tr>
<tr>
<td>یزد</td>
<td>۶/۱۱۶</td>
<td>۲/۳۸۷</td>
<td>۲/۳۸۷</td>
<td>۲/۳۸۷</td>
</tr>
<tr>
<td>کل</td>
<td>۵/۰۷۷</td>
<td>۲/۸۸۸</td>
<td>۲/۸۸۸</td>
<td>۲/۸۸۸</td>
</tr>
</tbody>
</table>

*میزان مصرف سوخت به ارزای هر رأس گاو شیرده (ریال) بر اساس تعداد نیروی کار به ارزای هر تن شیر (تن) ومیزان تولید شیر به ارزای هر تن شیر (تن) بر اساس متوسط کنسانتره مصرفی (تن)*
جدول ۲: آنالیز واریانس (ANOVA) میزان تولید شیر به ارای هر رأس گاز شیرده

| منبع اختلافات | درجه آزادی | جمع مربعات | مانیگنیم معنیدار | سطح معنیدار | اختلاف میان انواعها
|---------------|-------------|------------|-------------------|-------------|-------------------|
| اختلاف داخل استانها | ۴۲ | ۱۷ | ۰/۵۴۷ | ۵/۰۰۰ | ۱۷۰/۱۱۶
| اختلاف بین انواعها | ۱۲ | ۴۲ | ۰/۷۰۴ | ۵/۰۰۰ | ۴۳۷/۰۶۸
| کل | ۵۴ | ۵۶ | ۰/۸۵۱ | ۵/۰۰۰ | ۵۱۷/۱۸۸

جدول ۳: کارایی فنی و نیت شکاف تکنولوژی در استانهای مورد مطالعه

| استانها | کارایی فنی براساس تابع تولید فرامرزی | نیت شکاف تکنولوژی | همانگونه | اجرای چک (منطقه) | دادگاه کار
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>آذربایجان شرقی</td>
<td>۰/۳۰</td>
<td>۰/۴۲</td>
<td>۰/۲۷۷</td>
<td>۰/۱۱۲</td>
<td>۰/۶۹۶</td>
</tr>
<tr>
<td>اصفهان</td>
<td>۰/۲۶۰</td>
<td>۰/۴۲</td>
<td>۰/۱۱۲</td>
<td>۰/۶۹۶</td>
<td>۰/۶۹۶</td>
</tr>
<tr>
<td>تهران</td>
<td>۰/۲۶۰</td>
<td>۰/۴۲</td>
<td>۰/۱۱۲</td>
<td>۰/۶۹۶</td>
<td>۰/۶۹۶</td>
</tr>
<tr>
<td>خراسان</td>
<td>۰/۲۶۰</td>
<td>۰/۴۲</td>
<td>۰/۱۱۲</td>
<td>۰/۶۹۶</td>
<td>۰/۶۹۶</td>
</tr>
<tr>
<td>فارس</td>
<td>۰/۲۶۰</td>
<td>۰/۴۲</td>
<td>۰/۱۱۲</td>
<td>۰/۶۹۶</td>
<td>۰/۶۹۶</td>
</tr>
<tr>
<td>یزد</td>
<td>۰/۲۶۰</td>
<td>۰/۴۲</td>
<td>۰/۱۱۲</td>
<td>۰/۶۹۶</td>
<td>۰/۶۹۶</td>
</tr>
</tbody>
</table>

آذربایجان شرقی یک استان محروم از توانایی تولید بیشتر میان‌ریزهای بزرگ و تکنولوژی موجود به طور متوسط ۶۱ درصد محدودی را تولید می‌کند که با بهره‌گیری از تکنولوژی برتر (منطقه‌ای) می‌توانند تولید نامی‌دهند.

میانگین کارایی فنی حاصل از تخمین تابع تولید مزرعه در استانهای اصفهان، تهران، خراسان، فارس و یزد به ترتیب ۰/۲۷۷، ۰/۲۶۰، ۰/۲۶۰، ۰/۲۶۰، ۰/۲۶۰ است. همانگونه که در پنجمین قسمت شایع ارقام، مرکزی مستقل، منطقه‌ای، شرکت‌های خارجی و صنعتی در حوزه صنایع مواد مصرفی و تغییر سطح تکنولوژی می‌توان به طور متوسط ۳/۰۹۰۷ به ترتیب در استان‌های استانها مانند ۰/۲۶۰، ۰/۲۶۰، ۰/۲۶۰ و ۰/۲۶۰ درصد آفراشی داده می‌شود. ماهیتی رفتار تولید کندگان برتر در زمینه استفاده از اسیرگاه‌های متعدد، مدیریت خواراک و خوراک دادن، مدیریت تولید مثل و پرورش قربانی و نحوه استفاده از کلنی‌ها و ترکیب‌های روشی بین سایر تولید کندگان، می‌تواند در فرآیند تولید مؤثر باشد. میانگین کارایی فنی حاصل از تخمین تابع

(پرورش گاو شیری)
تولید فرامرزی نیز در استان‌های مازوکری به ترتیب ۲۴۵/۰۹۶، ۲۰۲۸/۰۵۹۶، ۲۰۴/۰۵۹۲ و ۲۰۵/۰۵۹۳ که به این اساس می‌باشد. نسبت شکاف تکنولوژی آنها به ترتیب ۶/۸۹۳۹، ۴/۶۸۹۸ و ۶/۸۹۶۴ است. نباید این اتاقه در استان اصلی، خراسان، فارس و یزد با استفاده از عوامل و توجهات لیبرالیت تکنولوژی موجود به ترتیب و به‌طور متوسط ۶/۸۹۳۹ و ۴/۶۸۹۸ درصد محسوب را تولید می‌کند که به‌طور گیری از تکنولوژی ممتاز (تکنوکولوژی) نیز تولید نمی‌شود. نسبت شکاف تکنولوژی در استان‌های مختلف قابل مقایسه است. نباید برای استان‌های مورد مطالعه را به اساس عملکرد تکنیکی می‌توان به صورت زیر تولید کنندگان می‌باشند:

تهیه‌کننده، فارس، اصفهان، آذربایجان

این ترتیب اطلاعات اولیه مدرج در جدول ۱ توسط محققین درد. بدینصورت که در استان‌های تهران و یزد از لحاظ میزان تولید شهر به‌این ترتیب هزار گزارش تولیدی متوسط کشتی‌های و علفه در مصرف، تعداد تیروی کار و میزان مصرف به‌این ترتیب شاخص است. نسبت استان‌های نسیم به‌سایر استان‌ها در زمینه صنعت پرورش گاو‌پروری را شامل بودن به قدمت صنعت در این استان مربوطه دانست. در خویست پرورش گاو‌پروری اصلی از این استان به سایر استان‌ها کمتر مسئولیت دارد. به‌همگروهی از مشاوران

یابده: تولید کنندگان الکترو آزمایشی، کارایی

ین تولید کنندگان الکترو مشخص می‌گردد.
منابع مورد استفاده

1. حمیدی، ع. و م. کاظم‌نژاد. 1384. بررسی نظام پرداخت شیر باران‌های و رفتار مصرفی خانوارها در ایران. مجموعه مقالات پنجمین کنفرانس دوستانه اقتصاد کشاورزی ایران دانشگاه سیستان و بلوچستان.

2. حسن‌پور، و. و نعمتی. 1384. تحلیل تولید و کارآیی فنی گاوداری‌های شیری صنعتی استان کهگیلویه و بویراحمد.


4. شیرازی. ش. 1375. کارآیی گندم‌کاران و عوامل مؤثر بر آن در استان فارس. پایان نامه کارشناسی ارشد اقتصاد کشاورزی، دانشگاه شیراز.

5. شیرازی کربیلی، ع. و. زیباپور. 1382. بررسی مدل‌های مشکلات سوددهی ورود شیر گاوداری‌های صنعتی در استان فارس.

6. صوبایی، م. و. امیرالساداتی، م. و. میناب، م. 1378. توانایی کارآیی گاوداری‌های شیری استان فارس، پایان نامه کارشناسی ارشد اقتصاد کشاورزی دانشگاه شیراز.

7. صفوی، ب. 1381. بررسی و ارزیابی کارآیی فنی و اولویتهای صنعتی تولید شیر کشور، فصلنامه پژوهش‌ها و سیاست‌های اقتصادی: 41(2), 99-110.

8. کاظم‌نژاد، م. و. میرکریمی. 1382. بررسی اقتصادی محصولات دامی. جلد 1 مطالعه موردی شیر. مؤسسه پژوهش‌های پرورندگی و اقتصاد کشاورزی میرکریمی. مدیریت امور پردازش و تهیه پیشنهادات تحقیقاتی.


10. پارسا، ا. و. امیرالساداتی، م. و. میناب، م. 1382. بررسی کارآیی و اولویتهای بروز گاوداری شیری استان فارس. مجموعه مقالات پنجمین کنفرانس دوستانه اقتصاد کشاورزی ایران، دانشگاه سیستان و بلوچستان.


