تیمیان میزان باقیمانده انواع آفت کشها در برخی از سبزیجات نازه و گلخانه‌ای

زهره هادیان* و محمدحسین عزیزی²

(تاریخ دریافت: 1385/3/24; تاریخ پذیرش: 1386/3/20)

چکیده

به منظور تعیین میزان باقیمانده انواع آفت کش‌ها در برخی از سبزیجات نازه و گلخانه‌ای، این تحقیق به روش توصیفی روي 25 نوع Organochlorine Dicarboximides (گرچه فرتعی، خیار، قارچ‌مانه‌ای و همچنین نازه) با هدف بررسی و وجود 15 نوع باقیمانده سم از انواع Strobilurin و Pyrethroids، Triazine، Organophosphorus، Organonitrogen (ینکی و پیچیده) در محصولات کشاورزی، شناسایی سموم و تعیین مقدار آنها با استفاده از کروماتوگرافی گازی- طیف سنجی جرمی به شکل تحقیقات می‌باشد. خط تاریخ گرفت. پس از استخراج سموم از محصولات شیرینانگو به منظور فیلتر شدن سلولاریت، با تذکر از آزمون آسیدی دوتیپی ماینگین باقیمانده آفت کش‌ها، سنگینی‌شماری شده، در نمونه‌ها با میزان حداکثر مجاز توصیه شده (Codex Alimentarius FAO/WHO (MRLs)) و 0.05 و 0.09 درصد تعیین شد. نتایج آزمون مقایسه دوتایی میانگین باقیمانده آفت کش‌ها نشان داد که در نمونه‌ها با میزان حداکثر مجاز اعلام شد. همچنین مقدار اکتیو میلی‌گرمی را نشان داد و کمتر از مقدار مجاز اعلام شده و اکتیو میلی‌گرمی.

واژه‌های کلیدی: باقی‌مانده آفت کش‌ها، سبزیجات، کروماتوگرافی گازی- طیف سنجی جرمی

مقدمه

سموم شیمیایی دفع آفات نباتی به عنوان یکی از آلان‌ده‌های مهم موارد غذازی به شمار می‌آید. (23) با توجه به روستو و به رشد تولید و مصرف محصولات کشاورزی و میزان ایجاد سموم خریداری و مصرف شده از منابع داخلی و خارجی برای کنترل آفات و قاچُری، حدود 211 ترکیب شیمیایی با فرمول‌های مختلف که در کشور، به یک مرکز متهما و کارشناسی متعلق به یک سازمان مختلف از کاربرد آفت کش‌ها سلامت افراد و محیط زیست می‌باشد که این مسئله را به توجه جدی و تهیه می‌نماید (1). بررسی‌های

1. عضو هیئت علمی استادی و تحقیقات غذازی و صنایع غذایی، دانشگاه علوم پزشکی شهید بهشتی، تهران
2. دانشیار علوم صنایع غذایی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران
3. مشاور مکاتبات، پست الکترونیکی: hadidan_z2004@yahoo.com

195
اساسنها روغنی گیاهی، غلظت ماتریکس اسوم، به منظور
دستیابی به حداکثر کم و حذف عوامل داخلی گر و
تزریق حجم بیشتر نمونه در حال حاضری با هدایت کمتر
به عنوان روش‌های (On-Line Column Method) ماتریکس
تغییر مقداری می‌توان بکار گرفت (15). روش‌های مبنی بر
استخراج با استر، گذار مانند اثر گیروپوزول سیک و در
AOAC در تخلیص نمونه به عنوان روش رسمی آمیکا یافته‌شده است. در کشورهای اروپایی روش
روش تخلیص ادغام گردیده است (20). برخی از
محققان آنالیز عصاره تمیز شده به منظور رسانش و تعیین
مقدار سلزس مانند کرومومترافک مابع
با آکساراز فلورسکس، کرومومترافک گازی با آکسارازهای
Electron Capture Detector (ECD) ریاسان الکترونی
(Nitrogen Phosphor Detector) (NPD) و (Nitrogen Sensitive Detector) (NSD)
(FLame Photometry Detector) (FPD) و (Flame Suhelis)
(Trap Ion Mass Spectrometry) (TIMS) و (Ion Trap Mass Spectrometry) (ITMS)
مرور قرار داده‌اند.
با توجه به عصر دانوی اسوم دفع آفات تاثیر در محصولات
کشاورزی کشور و مخاطرات بهداشتی ناشی از بیماری‌های این
سوم بر سلامت افراد جامعه، این بررسی باید گرفته و نمونه‌هایی از
غیار غلظاهای یزد و کرمان، گروه‌فروکی غلظاهای می‌تواند
وهویج سباتی آیاذ از میزان اصلی میوه و نه به شهش تهران، به
منظور تعیین میزان باقی‌مانده 105 نوع افسک کش از انواع
Triazine ,Organochlorine ,Dicarboximides ,Organonitrogen
و Strobilurin و Pyrethroids , Organophosphorus
استنیو تحقیقات غذایی و صنایع غذایی کشور با همکاری
انگلستان در
Central Science Laboratory (CSL) انگلستان در
سال 1984 انجام گرفت.
مواد و روش‌ها

تحقیق حاضر به روش توصیفی روش 25 نمونه از برخی از انواع خیار، گوجه فرنگی و هویج عرضه شده در میدان اصلی میوه و تره بار شهر تهران انجام شد.

مواد شیمیایی و حال‌لا

کلسیم سدیم، سولفات سدیم، بی‌کربنات سدیم، استیل، سیکلگلکران، هگنز، اتیل استات، دی‌پنتامید، اتیل، فسفات، دی‌هیدروژن فسفات از شرکت Fisher Scientific (UK) و استانداردهای انواع سوموهی که در جدول 1 آورده شده از شرکت Thames Restek (UK) خریداری گردید.

روش نمونه‌گیری

نمونه‌گیری به روش تصادفی ساده طبق روش توصیفی شده، نمونه‌برداری کلاسیک به منظور تنوع نباتی مانده آفت کش‌ها از (Codex Alimentarius 2000/1/24) در میدان اصلی میوه و تره‌بار شهر تهران در شهریور ماه 1385 انجام شد (6). نمونه‌های اولیه از هر 500-6000 کیلوگرم معادل 10 واحد بوده (وزن هر واحد 1 کیلوگرم) که در یک کیسه تبلوئی قرار داده شد و روی آن کد مطالعه فرم اطلاعاتی مربوط به سبب‌های مشکلگذار پلاک بندی شده (کدی که توجه به گلخانه‌ای یا تازه بودن، محل کشت و تعداد نمونه‌ها تغییر شدند. به طوری که برای خیار گلخانه‌ای یک کد از یک تا یک، فروشگاه‌آباد کد از یک تا پنجم برای گوجه فرنگی یا ببندسال کد از یک تا ده در نظر گرفته شد) از نمونه‌ها پس از 2 ساعت به سازمان سرخدانه و کشتنگاره شهیداری تهران منتقل گردیدند.

جهان‌سازی و اندازه‌گیری باینی‌مانده سوم

چندین روش برای جداسازی بیان‌های با نسبت جرم به مول (m/M)

مختلف در دسترس است. دستگاه طیف سنجی جرمی قادر به تبدیل اندازه‌گیری کیفی و کمی می‌شود. این سیستم دارای خصوصیاتی متفاوتی از ترکیبات به کار می‌رود. ترغیب کاربرد

Central Science Laboratory

واقع در پورک انجمن ارسال شد.
جدول 1. لیست انواع آفت کش‌های بروسی شده در انتخاب سیب‌زیبات

<table>
<thead>
<tr>
<th>شماره</th>
<th>نام موادهای آفت‌کشی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-phenylphenol</td>
</tr>
<tr>
<td>2</td>
<td>DDD-pp</td>
</tr>
<tr>
<td>3</td>
<td>DDE-pp</td>
</tr>
<tr>
<td>4</td>
<td>DDT-op</td>
</tr>
<tr>
<td>5</td>
<td>DDT-pp</td>
</tr>
<tr>
<td>6</td>
<td>HCH-gamma</td>
</tr>
<tr>
<td>7</td>
<td>Atrazine</td>
</tr>
<tr>
<td>8</td>
<td>azinphos- methyl</td>
</tr>
<tr>
<td>9</td>
<td>Azoxyostrobin</td>
</tr>
<tr>
<td>10</td>
<td>Bendiocarb</td>
</tr>
<tr>
<td>11</td>
<td>Bifenthrin</td>
</tr>
<tr>
<td>12</td>
<td>Bipheryl</td>
</tr>
<tr>
<td>13</td>
<td>Bromopropylate</td>
</tr>
<tr>
<td>14</td>
<td>Bupirimate</td>
</tr>
<tr>
<td>15</td>
<td>Buprofenzin</td>
</tr>
<tr>
<td>16</td>
<td>Captan</td>
</tr>
<tr>
<td>17</td>
<td>Carbaryl</td>
</tr>
<tr>
<td>18</td>
<td>Carbofuran</td>
</tr>
<tr>
<td>19</td>
<td>Chlorfenvinphos</td>
</tr>
<tr>
<td>20</td>
<td>Chlorpropham</td>
</tr>
<tr>
<td>21</td>
<td>Chlorpyrifos</td>
</tr>
<tr>
<td>22</td>
<td>chlorpyrifos-methyl</td>
</tr>
<tr>
<td>23</td>
<td>Chlozelinate</td>
</tr>
<tr>
<td>24</td>
<td>Cypermethrin</td>
</tr>
<tr>
<td>25</td>
<td>Deltamethrin</td>
</tr>
<tr>
<td>26</td>
<td>Dichlofluuanid</td>
</tr>
<tr>
<td>27</td>
<td>Dichlorvos</td>
</tr>
<tr>
<td>28</td>
<td>Dicloran</td>
</tr>
<tr>
<td>29</td>
<td>Dicofol</td>
</tr>
<tr>
<td>30</td>
<td>Dimethoate</td>
</tr>
<tr>
<td>31</td>
<td>Diphenylamine</td>
</tr>
<tr>
<td>32</td>
<td>endosulfan (I)</td>
</tr>
<tr>
<td>33</td>
<td>endosulfan (II)</td>
</tr>
<tr>
<td>34</td>
<td>endosulfan- sulphate</td>
</tr>
<tr>
<td>35</td>
<td>Ethion</td>
</tr>
<tr>
<td>36</td>
<td>Ethofumesate</td>
</tr>
<tr>
<td>37</td>
<td>Ethoprophos</td>
</tr>
<tr>
<td>38</td>
<td>Ethoxyquin</td>
</tr>
<tr>
<td>39</td>
<td>Etridiazole</td>
</tr>
<tr>
<td>40</td>
<td>Etrimfos</td>
</tr>
<tr>
<td>41</td>
<td>Fenarimol</td>
</tr>
</tbody>
</table>
نموده خیار
شکل ۱. میزان باقی مانده آفت کش اپرودون در ۵ نمونه خیار گلخانه‌ای بزرگ

حساسیت مورد نیاز برای آنالیز محصولات کشاورزی از نظر باقی مانده سموم مناسب ارزیابی شده است. حساسیت و گریختن پذیری در سطح عالی این روش، تعبیر کیفی و کمی مقدار کم بقایی مانده آفت کشها را در محصولات کشاورزی امکان‌پذیر نموده است (۱۹).

نتایج و بحث
بررسی میزان باقی مانده آفت کش‌های متعادل روز ۵۰ نمونه انواع سبزی عرضه شده در میدان اصلی میوه و تره بار تهیه‌ای به ویتشنگ/GC/ITMS روش بررسی باقی مانده در میزان داده‌های درصد از نمونه‌ها دارای انواع سموم فاقد کش، حشره‌کش و علف کش و بودن‌یا به توجه به حد تغییر در روش شناسایی سموم در این تحقیق (mg/kg) و انواع باقی مانده آفت کش‌های شناسایی .chloropyrifos .fenvalerate .کش‌های شناسایی iprodione و permestrin .fenpropathrin .trifuralin .phosalone در نمونه‌ها شامل سموم از تحقیق انجام شده در تورنتو کانادا (۱۷) برخی از سموم شناسایی شده مانند منبع از کشور .endosulfan و azinphos-methyl از نمونه‌های خیار، trifuralin از نمونه‌های هیپ، sulphate از نمونه‌های کشور .endosulfan شناسایی گروه فنگیک .از نمونه‌های طالبی در دارای بهبود کش مانند از Codex MRLs قرار در نمونه‌های خیار از این iprodione سموم مورد بررسی باقی مانده آفت کشها که در تولید آنها هیچ نوع سمی به کار نرفته با ۵ تکرار و با غلظت ۵۰mg/kg از تیتر تیتر تیتر تیتر (Spiking) می‌باشد.
جدول ۲. مقایسه میانگین باقی مانده انواع آفت‌کش‌های موجود در نمونه‌های بررسی شده با معیارهای حد پایین‌ترین و حد بالایی اطمینان

<table>
<thead>
<tr>
<th>کدCodex MRLs (mg/kg)</th>
<th>حد بالایی اطمینان</th>
<th>حد پایین‌ترین اطمینان</th>
<th>Mean ± S. (mg/kg)</th>
<th>Max (mg/kg)</th>
<th>Min (mg/kg)</th>
<th>نمونه</th>
<th>رنگ</th>
<th>گونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱ ۰/۲۵*</td>
<td>۱/۲۵۰</td>
<td>۰/۰۰۸۲۵</td>
<td>۰/۴۳۲ ± ۰/۰۸۳۴۹</td>
<td>۰/۴۲۵۰۰۲</td>
<td>۰/۰۰۰۷۰۰۰۰۲</td>
<td>Iprodione</td>
<td>۱</td>
<td>خیار گلخانهای یلد ۱۷۵-۱۷۴۹۸</td>
</tr>
<tr>
<td>۲ ۰/۵</td>
<td>۰/۸۵۵</td>
<td>۰/۰۰۶۰۵</td>
<td>۰/۳۸۵ ± ۰/۰۰۳۹۶۹۹</td>
<td>۰/۰۲۵۴۲۱</td>
<td>۰/۰۰۰۷۰۰۰۰۲</td>
<td>Trifluralin</td>
<td>۲</td>
<td>خیار گلخانهای کهنو ۱۷۲۶۷-۰۱۵۰۰۰۰۲</td>
</tr>
<tr>
<td>۳ ۰/۵</td>
<td>۰/۸۵۵</td>
<td>۰/۰۰۶۰۵</td>
<td>۰/۳۸۵ ± ۰/۰۰۳۹۶۹۹</td>
<td>۰/۰۲۵۴۲۱</td>
<td>۰/۰۰۰۷۰۰۰۰۲</td>
<td>Chlortetracycline</td>
<td>۳</td>
<td>هویج پستان آباد ۱۷۲۶۷-۰۱۵۰۰۰۰۲</td>
</tr>
<tr>
<td>۴ ۰/۵</td>
<td>۰/۸۵۵</td>
<td>۰/۰۰۶۰۵</td>
<td>۰/۳۸۵ ± ۰/۰۰۳۹۶۹۹</td>
<td>۰/۰۲۵۴۲۱</td>
<td>۰/۰۰۰۷۰۰۰۰۲</td>
<td>Fenpyroximate</td>
<td>۴</td>
<td>گونه‌های فرنگی پندربرویس ۱۷۲۶۷-۰۱۵۰۰۰۰۲</td>
</tr>
<tr>
<td>۵ ۰/۵</td>
<td>۰/۸۵۵</td>
<td>۰/۰۰۶۰۵</td>
<td>۰/۳۸۵ ± ۰/۰۰۳۹۶۹۹</td>
<td>۰/۰۲۵۴۲۱</td>
<td>۰/۰۰۰۷۰۰۰۰۲</td>
<td>Fenpropoxyphene</td>
<td>۵</td>
<td>گونه‌های فرنگی پندربرویس ۱۷۲۶۷-۰۱۵۰۰۰۰۲</td>
</tr>
<tr>
<td>۶ ۰/۵</td>
<td>۰/۸۵۵</td>
<td>۰/۰۰۶۰۵</td>
<td>۰/۳۸۵ ± ۰/۰۰۳۹۶۹۹</td>
<td>۰/۰۲۵۴۲۱</td>
<td>۰/۰۰۰۷۰۰۰۰۲</td>
<td>Permethrin</td>
<td>۶</td>
<td>گونه‌های فرنگی پندربرویس ۱۷۲۶۷-۰۱۵۰۰۰۰۲</td>
</tr>
<tr>
<td>۷ ۰/۵</td>
<td>۰/۸۵۵</td>
<td>۰/۰۰۶۰۵</td>
<td>۰/۳۸۵ ± ۰/۰۰۳۹۶۹۹</td>
<td>۰/۰۲۵۴۲۱</td>
<td>۰/۰۰۰۷۰۰۰۰۲</td>
<td>Fenvalerate</td>
<td>۷</td>
<td>گونه‌های فرنگی پندربرویس ۱۷۲۶۷-۰۱۵۰۰۰۰۲</td>
</tr>
<tr>
<td>۸ ۰/۵</td>
<td>۰/۸۵۵</td>
<td>۰/۰۰۶۰۵</td>
<td>۰/۳۸۵ ± ۰/۰۰۳۹۶۹۹</td>
<td>۰/۰۲۵۴۲۱</td>
<td>۰/۰۰۰۷۰۰۰۰۲</td>
<td>Iprodione</td>
<td>۸</td>
<td>گونه‌های فرنگی پندربرویس ۱۷۲۶۷-۰۱۵۰۰۰۰۲</td>
</tr>
</tbody>
</table>

1. وقیت که احتراف معیار میانگین‌ها یا ۰.۵ سوپر باشد، می‌نیم مقدار نیز برای کمیت مورد نظر معتبر نیست.
2. وقیت که ۰.۵ سوپر باشد، حدود اعتماد برای میانگین می‌باشد و یک مقدار است.
<table>
<thead>
<tr>
<th>سم</th>
<th>Mean Recovery ± SE</th>
<th>R.S.D.</th>
<th>Mean Recovery ± SE</th>
<th>R.S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>fenvalerate</td>
<td>9/4/32±9/59</td>
<td>1/12</td>
<td>9/4/3±2/99</td>
<td>0/9</td>
</tr>
<tr>
<td>iprodione</td>
<td>9/4/3±2/99</td>
<td>0/2</td>
<td>9/4/3±2/99</td>
<td>0/2</td>
</tr>
<tr>
<td>permethrin</td>
<td>9/4/3±2/99</td>
<td>3/29</td>
<td>9/4/3±2/99</td>
<td>0/2</td>
</tr>
<tr>
<td>phosalone</td>
<td>9/4/3±2/99</td>
<td>0/2</td>
<td>9/4/3±2/99</td>
<td>0/2</td>
</tr>
<tr>
<td>trifluralin</td>
<td>9/4/3±2/99</td>
<td>0/2</td>
<td>9/4/3±2/99</td>
<td>0/2</td>
</tr>
<tr>
<td>chloropyrifos</td>
<td>9/4/3±2/99</td>
<td>0/2</td>
<td>9/4/3±2/99</td>
<td>0/2</td>
</tr>
</tbody>
</table>

منویه

1. چندین آزمایشگاه بعدهست می‌آید.

2. اختلاف آماری معنی‌دار در سطح کمتر از 5 درصد بود trifluralin با Codex MRLs

3. بدون مربوط به مخاطرات آنتی‌کئار که به تأخیر WHO و FAO/Codex مقدار ماده انتقالی در بوده است

4. در این تحقیق بالاترین میزان آنتی‌کئار fenvalerate در کل سلولی از LD90 فن بوده است

5. این یافته در آزمایشگاه‌های دارای انتقالی در سطح کمتر از LD90 که به تأخیر WHO و FAO/Codex مقدار ماده انتقالی در بوده است

6. این یافته در آزمایشگاه‌های دارای انتقالی در سطح کمتر از LD90 که به تأخیر WHO و FAO/Codex مقدار ماده انتقالی در بوده است

7. این یافته در آزمایشگاه‌های دارای انتقالی در سطح کمتر از LD90 که به تأخیر WHO و FAO/Codex مقدار ماده انتقالی در بوده است

8. این یافته در آزمایشگاه‌های دارای انتقالی در سطح کمتر از LD90 که به تأخیر WHO و FAO/Codex مقدار ماده انتقالی در بوده است

9. این یافته در آزمایشگاه‌های دارای انتقالی در سطح کمتر از LD90 که به تأخیر WHO و FAO/Codex مقدار ماده انتقالی در بوده است

10. این یافته در آزمایشگاه‌های دارای انتقالی در سطح کمتر از LD90 که به تأخیر WHO و FAO/Codex مقدار ماده انتقالی در بوده است

11. این یافته در آزمایشگاه‌های دارای انتقالی در سطح کمتر از LD90 که به تأخیر WHO و FAO/Codex مقدار ماده انتقالی در بوده است

12. این یافته در آزمایشگاه‌های دارای انتقالی در سطح کمتر از LD90 که به تأخیر WHO و FAO/Codex مقدار ماده انتقالی در بوده است

13. این یافته در آزمایشگاه‌های دارای انتقالی در سطح کمتر از LD90 که به تأخیر WHO و FAO/Codex مقدار ماده انتقالی در بوده است

14. این یافته در آزمایشگاه‌های دارای انتقالی در سطح کمتر از LD90 که به تأخیر WHO و FAO/Codex مقدار ماده انتقالی در بوده است

15. این یافته در آزمایشگاه‌های دارای انتقالی در سطح کمتر از LD90 که به تأخیر WHO و FAO/Codex مقدار ماده انتقالی در بوده است
است 3000 میلی گرم بارای هر کیلوگرم را تقطیع بی‌همیلت در ایجاد مخاطره حاد اعلام کرده است. یکی از نکات کلیدی آلایندا یادمانده سرویس روش تحلیلی مناسب است. در این تحقیق به منظور شناسایی و تعیین کیمیایی بارای مانده 1050 گرام از روش تحلیلی استفاده نشان داده که با کاهش اثر عوامل زادارندگی مربوط به ماتریکس (رگانداری) چریها و سایر تركیبات با نیز مولکول‌پالا و حذف سایر عوامل داخلی گرم، بیانی از بارایی چریها و سایر تحملات از فیروکوشیمیایی مختلف افزایش یافته است. بارایی تکنیک‌های کاره رنگ به مشترک شناسایی و تعیین کیمیایی بارای مانده مقداری از این تحقیق با تأثیر حاصل از بررسی چنگ (29) و (30) هایی‌لوا (18). نیسن (1999) (61) رادن‌ن 1 هم‌مانی دارد. حد تشخیص روش به‌کارگیری این تحقیق برای 0.5 ردیش سرویس mgkg^-1 و برای 0.5 ردیش سرویس 5 mgkg^-1 گزارش شده که با تحقیقات آنالیز فیزیولوژی (2000) (27) ردرگر کریک (5) هم‌مانی دارد. محضی‌ها مخلوطی از ارزیابی کارایی روش‌های مخاطره تعدادی را قبل از انجام روشن نشان روش تجزیه در طور می‌گیرد. به‌طوری‌که این پردازش‌ها در 5 برای حد تعیین بارایی سرویس سنجیده می‌شود و با تجدید محتوای 70% ردیش باشد. در این تحقیق بیانی شده که بارای سرویس شناسایی شده با تکنیک‌های GC-ITMS گاز‌هایی 200 ردیش (5/31/79) و 8/40/53/78/160/100/180/پوش
کشور در انجام این تحقیق و همکاری پرسنل آزمایشگاه‌های انجام شده زمان‌سیر و قدردانی می‌شود.

سپاسگزاری

از حمایت‌های مالی انجام تحقیقات تغذیه‌ای و صنایع غذایی مجدد خاتم و CSL می‌باشند.

منابع مورد استفاده


203


