نابی شناسی سنج شکارگر Nabis capsiformis (Het., Nabidae) با تغذیه از سنک Creontiades pallidus (Het., Miridae) قوزه پنبه

بعضی فتحی پور و علی جعفری

(تاریخ دریافت: ۱۳۸۵/۹/۱۶؛ تاریخ پذیرش: ۱۳۸۶/۳/۱۹)

چکیده

ویژگی‌های مختلف زیستی سنک فوزه پنبه Nabis capsiformis Germain و سنک شکارگر Nabis capsiformis Ramber و ۸ ساعت تاریکی محاسبه و مقایسه شدند. نتایج حاصل از تجزیه آماری داده‌ها نشان داد که تعداد مختلف رشدی (مرحله نابالغ) به ناگوار در سه سن دوم، طول دوره تخم‌زی، قیل و پس از تخم‌زی، طول عمر حشرات کامل و طول دوره زندهگی در سنک فوزه پنبه به صورت معنی‌داری کمتر از شکارگر Nabis capsiformis (آنت) یافته شد. طول دوره تخم‌زی، دوره پوزش نابالغ، طول دوره رشد (از تخم تا حشره کامل) در سنک Creontiades pallidus حدود ۴۵ روز در سنک نابیس به ترتیب ۴۸/۳۷ و ۴۵/۴۸ و در سنک فوزه پنبه به ترتیب ۴۲/۳۷ و ۴۴/۴۸ و در سنک نابیس به ترتیب ۴۰/۳۷ و ۴۱/۳۷ روز تخم‌زی و در سنک فوزه پنبه به ترتیب ۴۲/۳۷ و ۴۳/۳۷ و در سنک نابیس به ترتیب ۴۰/۳۷ و ۴۱/۳۷ روز تخم‌زی و در سنک فوزه پنبه به ترتیب ۴۲/۳۷ و ۴۳/۳۷ و در سنک فوزه پنبه به ترتیب ۴۱/۳۷ و ۴۲/۳۷ روز تخم‌زی و در سنک نابیس به ترتیب ۴۰/۳۷ و ۴۱/۳۷ روز تخم‌زی.

واژه‌های کلیدی: سنک فوزه پنبه، سنک نابیس، زیست شناسی

مقدمه

در مناطق پنبه کاری کشور بوشهر در استان خراسان سنجش ویژگی‌های مختلفی از آفتاب به محصول پنبه خسارت وارد می‌کند که سنک Creontiades pallidus Ramber (Het., Miridae) قوزه پنبه در زمینه این آفات است (۱۵). حشرات کامل و پوزش از آن تخریب و کربه در حدود ۹۶ و ۷۲ درصد تخمها تخم‌زی در سنک نابیس به ترتیب ۶۷ و ۳۳ درصد تخم‌زی در سنک فوزه پنبه به ترتیب ۱۹ و ۸۴ درصد تخم‌زی.

باشند مورده حمله آف پوزش می‌گردد باز نابالغ و ریوش

می‌تازند (۲). لیپنیو و مدرس (۱۵) طی مطالعه فون سهای خانواده Miridae استان خراسان، تعداد ۱۵۴ گونه از این خانواده از جمله C. pallidus را جمع‌آوری و شناسایی گردند. حسینی (۷) نیز به اهمیت این گونه به عنوان آفت مهم پنبه در استان خراسان اشاره کرد و برخی ویژگی‌های زیستی و

1. به ترتیب دانشی و دانشجوی سابق کارشناسی ارشد حشره‌شناسی کشاورزی، دانشگاه کشاورزی، دانشگاه تربیت مدرس، تهران

fathi@modares.ac.ir: پست الکترونیکی

۱۵۷
تغییرات جمعیت آن را مورد بررسی قرار داده است. سنس‌های آزمایشگاهی مورد مطالعه قرار گرفته و طول دوره‌های مختلف رشدی (تنگ و پرور)، طول عمر حشرات کامل، طول دوره زنده و مرز‌های در داده‌های مربوط به سایر گونه‌هایی این گونه مطالعه نمی‌شود.

ن. capsimorformis، ن. roseipennis و N. rufusculus Reuter، ناشناخته‌های مختلف مورد مطالعه قرار N. kinbergii Reuter

گرفته و نتایج آنها مشترک شده است (6، 18 و 27).

هدف از انجام این تحقیق تعیین و مقایسه جنبه‌های مختلف زیستی از جمله طول دوره‌های رشدی و مراحل مختلف سنتی، C. pallidus و سکس شکارگر باعث شده‌است این طریق نسبت می‌باشد تا این طریق مطابق با نرم مطالعه روند زندگی و توسعه‌ی سکس شکارگر مطالعه شده بدون الزامات و کارایی شکارگر در کنترل جمعیت آنها برپا می‌تواند. مطالعه جنبه‌های مختلف زیستی آفات و درمانی طبیعی آنها پیش‌نیازی برای طراحی برآمی‌های کنترل بیولوژیک و مدیریت تلفیقی آفات محیط می‌شود.

با توجه به نتایج مکنیک در سنس‌های C. pallidus و ن. capsimorformis، سکس شکارگر باعث شده‌است در مراحل مختلف سنتی سکس قزوین بنی به طول مدت نسبتاً کوتاهی می‌تواند در مراحل مختلف سنتی سکس قزوین بیشتر از سایر سکس شکارگر باعث شده‌است.
رد و گونه به ظروف بلی ایلین استوانت های به قطر ۱۵ و ارتفاع ۲۵ سانتی‌متر که به آن‌ها به وسیله تور ریز بافت پوشانده شده بود، منتقل و جهت تغذیه سند قوزه بنیه از بزرگ‌های و غلاف لوبیا سبز استفاده شد. نخست از گذاشته شده توسط حشرات کامل سند قوزه روی غلاف‌های لوبیا سبز، روزانه به ظروف مخصوص تغذیه نمی‌شده و داخل انکوتابور قرار گرفته. پرورش و نگهداری حشرات و همچنین کلیه آزمایش‌های مربوط به این پژوهش در دمای ۴۶ درجه سانتی‌گراد (با تغییرات یک درجه) رطوبت نسبی ۵۵ درصد (با تغییرات ۵ درصد) و دوره ترپرا ۱۶ ساعت روتاسیون و ۸ ساعت ترپرا به صورت انتفاضا در شرایط کنترلی و ایجاد حشرات کامل در طوفان استوانت های به شرح فوک نگهداری و برای تغذیه آنها از پرورش سند قوزه پیش استفاده شد. برای تخم‌زیبی سند نابیس و نیز تغذیه پرورش سند قوزه داخل هر ظروف پرورش سه تا چهار عدد لوبیا سبز قرار داده شد. همچنین برای ایجاد حشرات شکارگر روی سطح عمودی طبق روش پروب (۲۰۱۵) از کاغذ صافی که به صورت زیگزاگ نتیجه استفاده گردید. غلاف‌های جانور تخم‌ریره روزانه به ظروف ویژه تغذیه نمی‌شده و در انکوتابور نگهداری گردیدند. توجه به جنگی کوچک پرورش‌های سنین نابیس و احتمال عدم توفیق در شکار پرورش‌های سنین قوزه در بهره روزولت پس از تخم‌ریره بالا بر پرورش سنین والد فاقده از نظر نگهداری Ephestia kuehniella Zeller. راه‌نمای سنین پرورش نابیس به مشاهده پوست استنادی پرورش تعبیه و روی ظروف درج گردید.

اندازه‌گیری پارامترهای زیستی
تعداد ۲۸۰ تخم سند قوزه پیش به این شرح حداکثر ۲۴ ساعت به عنوان جمعیت اولیه روی تعداد ۲۰ غلاف لوبیا سبز استفاده گردید. غلاف‌های جانور تخم‌ریره روزانه به ظروف ویژه تغذیه نمی‌شده و در انکوتابور نگهداری گردیدند.}

Nabis capsiformis (Het., Nabidae)
سنک فوقه را دارند. به صورت روزانه میزان مقرح و میترا نیز پوست‌نامه‌ی پوره‌ها شماره و لب گردید. حشرات کامل ماده ظاهر شده به صورت انفرادی به همراه یک حشره نر و یک غلاف لولا سبز و یک نهال کاغذ صافی و نیز به همراه تعداد کافی پوره سن ۲۰ و ۳ سنک فوقه پنجه داخل لوله آزمایش شده ولوله مورد استفاده برای سنک فوقه پنجه قرار گرفتن و در انعکاس رشد نگهداری شدند. برخی‌ها تخم گذاری هر روز تعیین شدند و تعداد تخم‌های کاشته شده توسط هر ماده با استفاده از استریم‌سکوپ شمارش و لب گردید. تعداد تخم کاشته شده، تعیین تخم عرضه و تعداد حشره کامل ظاهر شده به صورت روزانه انتها عمده بود. درصد زندگی مراحل مختلف رشد حشره قصد و شکارگرگان آن با استفاده از روش آزمون نسبتاً و یا به‌طوری‌گونا بر‌نمایه آماری قرار گرفت.

نتایج

مقایسه ریزه‌بندی طول دوره‌های مختلف سنگی و رشته مراحل نابلغ و بالغ سنک فوقه به و سنک شکارگر نابیس شسام طول دوره‌های جنینی و پوره (۹) نسبت به سنین پنج‌گانه و کل دوره پوره (۵). طول دوره تخم‌نگهداری از تخم‌نگهداری کامل طول دوره حشره کامل و همچنین طول دوره سنک فوقه (از تخم‌نگهداری) طول دوره تخم‌نگهداری و قبلاً از تخم‌نگهداری و طول دوره حشره کامل و همچنین طول دوره سنک فوقه (از تخم‌نگهداری) در جدول ۱ در جدول ۲ و جدول ۳. نتایج به دست آمده نشان داد که طول تمام دوره‌های سنگی و رشته مربوط به مراحل نابلغ، بالغ و مجموع در مهلته به غیر از طول دوره رشد شخص ۲ به صورت معنی‌داری N. capsiformis (۹) پیدا نمی‌کند. سنک فوقه پنجه و سنک شکارگر نابیس از تخم‌زدن فرو رشد در سوی سنگ فوقه پنجه به ترتیب در سنگ فوقه پنجه و سنگ شکارگر نابیس از تخم‌زدن فرو رشد در سوی سنگ فوقه پنجه به ترتیب در سنگ فوقه پنجه و سنگ شکارگر نابیس (۲) به صورت معنی‌داری C. pallidus (۳) پیدا نمی‌کند. سنک فوقه پنجه در نوبت اول و در سنگ شکارگر نابیس به ترتیب در سنگ فوقه پنجه به ترتیب در سنگ شکارگر نابیس (۲) به صورت معنی‌داری N. capsiformis (۳) پیدا نمی‌کند. سنک فوقه پنجه و سنک شکارگر نابیس از تخم‌زدن فرو رشد در سوی سنگ فوقه پنجه به ترتیب در سنگ شکارگر نابیس (۲) به صورت معنی‌داری C. pallidus (۳) پیدا نمی‌کند. سنک فوقه پنجه در نوبت اول و در سنگ شکارگر نابیس به ترتیب در سنگ فوقه پنجه به ترتیب در سنگ شکارگر نابیس (۲) به صورت معنی‌داری N. capsiformis (۳) پیدا نمی‌کند. سنک فوقه پنجه و سنک شکارگر نابیس از تخم‌زدن فرو رشد در سوی سنگ فوقه پنجه به ترتیب در سنگ شکارگر نابیس (۲) به صورت معنی‌داری C. pallidus (۳) پیدا نمی‌کند.
جدول ۱. طول مراحل مختلف سنی و رشدی سنک قوزه پنجه و سنک شکارگر نایپس (میانگین ± خطای معیار)

<table>
<thead>
<tr>
<th>N. capsiformis</th>
<th>C. pallidus</th>
<th>طول دوره‌های رشدی و سنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷/۲۹±۰/۰۵۰</td>
<td>۵/۹۴±۰/۱۲۰</td>
<td>دوره جنین تخم</td>
</tr>
<tr>
<td>۲/۸۱±۰/۳۹۶</td>
<td>۲/۵۰±۰/۸۲۴</td>
<td>پوره سن ۱</td>
</tr>
<tr>
<td>۲/۵۳±۰/۵۲۸</td>
<td>۲/۸۳±۰/۶۲۰</td>
<td>پوره سن ۲</td>
</tr>
<tr>
<td>۲/۱۲±۰/۶۲۰</td>
<td>۲/۱۲±۰/۵۱۲</td>
<td>پوره سن ۳</td>
</tr>
<tr>
<td>۲/۹۰±۰/۶۲۰</td>
<td>۲/۹۰±۰/۶۲۰</td>
<td>پوره سن ۴</td>
</tr>
<tr>
<td>۳/۱۹±۰/۱۲۰</td>
<td>۲/۱۸±۰/۵۵۰</td>
<td>پوره سن ۵</td>
</tr>
<tr>
<td>۱۴/۱۰±۰/۳۷۶</td>
<td>۱۰/۸۴±۰/۱۱۶</td>
<td>کل دوره ژنگل</td>
</tr>
<tr>
<td>۱۹/۲۵±۰/۴۲۰</td>
<td>۱۶/۴۶±۰/۱۱۶</td>
<td>کل مراحل رشدی (تخم تا حشره کامل)</td>
</tr>
<tr>
<td>۱۲/۰۲±۰/۹۷۶</td>
<td>۶/۰۷±۰/۳۳۶</td>
<td>دوره قبل از تخم‌بریزی</td>
</tr>
<tr>
<td>۱۸/۰۲±۰/۴۲۰</td>
<td>۹/۰۴±۰/۲۱۲</td>
<td>دوره تخم‌بریزی</td>
</tr>
<tr>
<td>۲/۵۰±۰/۳۵۰</td>
<td>۱/۲۰±۰/۱۹۰</td>
<td>دوره پس از تخم‌بریزی</td>
</tr>
<tr>
<td>۲۷/۶۰±۰/۲۵۰</td>
<td>۱۲/۲۵±۰/۱۳۰</td>
<td>طول عمر حشرات ماده</td>
</tr>
<tr>
<td>۲۶/۹۰±۰/۳۷۰</td>
<td>۲۸/۷۴±۰/۱۱۰</td>
<td>طول دوره ژنگل</td>
</tr>
</tbody>
</table>

جدول ۲. درصد زنده‌مانی مراحل مختلف سنک قوزه پنجه و سنک شکارگر نایپس

<table>
<thead>
<tr>
<th>N. capsiformis</th>
<th>C. pallidus</th>
<th>مرحله رشدی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷۷/۷۸*</td>
<td>۷۰/۷۱*</td>
<td>تبدیل جمعیت اولیه (تخم) به پوره سن ۱</td>
</tr>
<tr>
<td>۵۰/۵۰*</td>
<td>۵۰/۵۰*</td>
<td>تبدیل جمعیت اولیه به پوره سن ۲</td>
</tr>
<tr>
<td>۴۰/۷۸*</td>
<td>۴۰/۷۸*</td>
<td>تبدیل جمعیت اولیه به پوره سن ۳</td>
</tr>
<tr>
<td>۳۰/۷۱*</td>
<td>۳۰/۷۱*</td>
<td>تبدیل جمعیت اولیه به پوره سن ۴</td>
</tr>
<tr>
<td>۲۹/۸۳*</td>
<td>۲۹/۸۳*</td>
<td>تبدیل جمعیت اولیه به حشره کامل</td>
</tr>
<tr>
<td>۷۶/۷۸*</td>
<td>۷۰/۷۱*</td>
<td>تبدیل تخم به پوره سن ۱</td>
</tr>
<tr>
<td>۶۴/۵۰*</td>
<td>۶۴/۵۰*</td>
<td>تبدیل پوره سن ۱ به سن ۲</td>
</tr>
<tr>
<td>۸۴/۵۰*</td>
<td>۸۴/۵۰*</td>
<td>تبدیل پوره سن ۲ به سن ۳</td>
</tr>
<tr>
<td>۷۸/۶۲*</td>
<td>۷۸/۶۲*</td>
<td>تبدیل پوره سن ۳ به سن ۴</td>
</tr>
<tr>
<td>۹۰/۱۰*</td>
<td>۹۰/۱۰*</td>
<td>تبدیل پوره سن ۴ به سن ۵</td>
</tr>
<tr>
<td>۹۵/۱۰*</td>
<td>۹۵/۱۰*</td>
<td>تبدیل پوره سن ۵ به حشره کامل</td>
</tr>
</tbody>
</table>

* حروف غیر مشابه در هر رديف نشانگر وجود اختلاف معنی‌دار در سطح ۰/۰۵ و ** در سطح ۰/۰۱.
بحث

حسینی (2) برخی چندی‌های زیستی یکنواختندارند که در آزمایشگاه با شرایط دما 28-30 درجه سانتی‌گراد، رطوبت نسبی 45 درصد و دوره نوری 14 ساعت روشنایی و 8 ساعت تاریکی روز از نوع انداره گرفته و طول دوره جنینی، طول دوره باروری سن 4، 5 و 6 و طول دوره زندگی این حشره را به ترتیب 45/50، 45/50 و 45/50 (میانگین ± خطای معیار) تعیین کرد که با تابعی به دست آمده باید بین تحقیق در برخی موارد متفاوت می‌باشد. این پژوهش با توجه به تغییرات در محیط زیستی آزمایشگاهی و نیز محدودیت‌های آزمایشگاهی از این نتایج به عنوان مرجعی مفید می‌باشد. این نتایج به بررسی تأثیر افزایش جمعیتی بر حشره‌های مادر امکان‌پذیر می‌باشد.

C. pallidus و N. capsiformis

روند تغییرات امار طیفی یکنواختندارند که در آزمایشگاه با شرایط دما 28-30 درجه سانتی‌گراد، رطوبت نسبی 45 درصد و دوره نوری 14 ساعت روشنایی و 8 ساعت تاریکی روز از نوع انداره گرفته و طول دوره جنینی، طول دوره باروری سن 4، 5 و 6 و طول دوره زندگی این حشره را به ترتیب 45/50، 45/50 و 45/50 (میانگین ± خطای معیار) تعیین کرد که با تابعی به دست آمده باید بین تحقیق در برخی موارد متفاوت می‌باشد. این پژوهش با توجه به تغییرات در محیط زیستی آزمایشگاهی و نیز محدودیت‌های آزمایشگاهی از این نتایج به عنوان مرجعی مفید می‌باشد. این نتایج به بررسی تأثیر افزایش جمعیتی بر حشره‌های مادر امکان‌پذیر می‌باشد.

روند تغییرات امار طیفی یکنواختندارند که در آزمایشگاه با شرایط دما 28-30 درجه سانتی‌گراد، رطوبت نسبی 45 درصد و دوره نوری 14 ساعت روشنایی و 8 ساعت تاریکی روز از نوع انداره گرفته و طول دوره جنینی، طول دوره باروری سن 4، 5 و 6 و طول دوره زندگی این حشره را به ترتیب 45/50، 45/50 و 45/50 (میانگین ± خطای معیار) تعیین کرد که با تابعی به دست آمده باید بین تحقیق در برخی موارد متفاوت می‌باشد. این پژوهش با توجه به تغییرات در محیط زیستی آزمایشگاهی و نیز محدودیت‌های آزمایشگاهی از این نتایج به عنوان مرجعی مفید می‌باشد. این نتایج به بررسی تأثیر افزایش جمعیتی بر حشره‌های مادر امکان‌پذیر می‌باشد.

روند تغییرات امار طیفی یکنواختندارند که در آزمایشگاه با شرایط دما 28-30 درجه سانتی‌گراد، رطوبت نسبی 45 درصد و دوره نوری 14 ساعت روشنایی و 8 ساعت تاریکی روز از نوع انداره گرفته و طول دوره جنینی، طول دوره باروری سن 4، 5 و 6 و طول دوره زندگی این حشره را به ترتیب 45/50، 45/50 و 45/50 (میانگین ± خطای معیار) تعیین کرد که با تابعی به دست آمده باید بین تحقیق در برخی موارد متفاوت می‌باشد. این پژوهش با توجه به تغییرات در محیط زیستی آزمایشگاهی و نیز محدودیت‌های آزمایشگاهی از این نتایج به عنوان مرجعی مفید می‌باشد. این نتایج به بررسی تأثیر افزایش جمعیتی بر حشره‌های مادر امکان‌پذیر می‌باشد.
نمودار های فوق نشان می‌دهند که دو تولانتی دارای تغییرات مشابهی در کیفیت کنترل هستند.

در مورد هر یک از مراحل شناسایی به صورت اعداد حداقل و حداکثر اعلام کردند. نامبرگان طول دوره ی جنینی تخم، طول دوره پورگی ی سه‌رو، طول دوره پورگی ی سه‌رو وقتی نسبی 75 درصد را تا 3 به طول می‌بیند که این محقق Baculatrix thurberiella طول دوره ی جنینی تخم و طول دوره پورگی (نیم سن پورگی) و فوق این شکاگرک را به ترتیب 3 و 1/6 هب و دست آورد که در هر دو مورد اعداد حاضری اندکی بیشتر از نتایج تحقیق حاضر است. در تحقیق مذکور، طول عمر حشرات کامل بین 3 تا 8 روز و طول دوره زندگی از تخم تا زمان مرگ(26 تا 3) روز اعلام شده است که در مقایسه با اعداد به دست آمده از تحقیق حاضر در مورد هر یک از مراحل شناسایی به صورت اعداد حداقل و حداکثر اعلام کردند. نامبرگان طول دوره ی جنینی تخم، طول دوره پورگی ی سه‌رو، طول دوره پورگی ی سه‌رو وقتی نسبی 75 درصد را تا 3 به طول می‌بیند که این محقق Baculatrix thurberiella طول دوره ی جنینی تخم و طول دوره پورگی (نیم سن پورگی) و فوق این شکاگرک را به ترتیب 3 و 1/6 هب و دست آورد که در هر دو مورد اعداد حاضری اندکی بیشتر از نتایج تحقیق حاضر است. در تحقیق مذکور، طول عمر حشرات کامل بین 3 تا 8 روز و طول دوره زندگی از تخم تا زمان مرگ(26 تا 3) روز اعلام شده است که در مقایسه با اعداد به دست آمده از تحقیق حاضر
به ترتیب 76 و 20/44 روز به ویژه در مورد طول عمر حشرات کامل بسیار کمتر است. نامبرده میانگین تعادل تخم تولید شده توسط هر فرد ماده در طول عمر را 14/4 عدد ذکر کرد که نتایجی عمدتاً با دست اماده به دست اماده از تحقیق حاضر می‌باشد (116). نامبرده بر اعتقاد است که این شکارگر، گونه‌های متعددی از طعم‌ها مورد حمله قرار داده و از آنها تغذیه می‌کند و گسترده‌ای دانه میزانی می‌تواند از میزان کارایی آن در برنامه‌های کنترل پیولوزیک‌های باغ‌های آبی و موجود در ارتقای به فعالیت سیستم ماده در مزرعه پنی استان خراسان نیز قابل تأمل باشد. ساسون و بلال (24) میانگین طول عمر ناحیه ماده سن N. capsiformis و سکس شکارگر N. pallidus سنک‌فوزه پنیه و C. pallidus منشا میده که طول زندگی و رشد از ابتدا تا حشره کامل حشره آفته قربانی می‌شود. آب اندازه‌ی مناسب که حشره آفته می‌تواند در حفرات ماده و طول دوره تخم‌برداری آفت و شکارگر نشان می‌دهد که طول این دوره در حشره شکارگر به میزان قابل توجهی بیشتر از حشره آفته می‌باشد. انتظار می‌رود که به علت طول‌امی بودن دوره تخم‌برداری در حشره شکارگر، میزان تعادل این حشره بیشتر از حشره آفته باشد که نتایج به دست آمده، چنین وضعیتی را نتیجه می‌کند. بیشتر بودن میزان تولید مثل سنک ناسب در مقایسه با سنک قوزه پنی (حدود دو برابر) و بیشتر می‌باشد. مطلبی برای این شکارگر محصول شده و می‌تواند بخشی از خصوصیت منفی خود که طول زندگی بودن دوره رشدی را جبران نماید. ویژگی مطلبی دیگر شکارگر مورد مطالعه این است که در مقایسه با حشره آفته درصد بیشتری از افراد جمعیت اولیه موفق به خروج از مرحله رشدی و ورود به مرحله بلوغ می‌شوند و شروع به تولید مثل می‌نمایند. شکارگر عادت آن به وسیله بیشتر نبودن ماده‌های تولید شده در سنک قوزه پنی خصیت می‌شود. در برنامه‌های مدیریت تلفیق آفات، محیط طبیعی باید برای تغذیه شکارگرها و سایر عوامل مفید راه‌های شده و از انتفاه بی‌رویه از جویش بسیاری که سیستم‌های کشت پنی در کشور است، پرهیز شود. (100)
1. Chrysoperla carnea و Nabis capsiformis

