برآورد وراثت پذیری و زنده‌ای کنترل کننده عملکرد دانه و برخی صفات مرتبط با آن در تلاقی ارقام اف disple نا رادیکال جو

امین باقی زاده، علی‌راست علی‌قاشم، محمد‌رضا نقوی و مصطفی حاجی‌رضایی

(تاریخ دریافت: 1386/12/27،تاریخ پذیرش: 1386/5/16)

چکیده

بر آورد وراثت پذیری و تعیین تعداد زنده‌ای کنترل کننده عملکرد دانه و برخی صفات مرتبط با آن در جیو، نسل‌های ۴، ۵ و ۶ حاصل از تلاقی در روش اف و رادیکال بهبود و ضرایب واردین در شرایط زرعی و در قالب طرح بلورکه کامل تصادفی با سه تکرار کاشته شدند. تعداد هزینه، تعداد سبیله، تعداد سبیله، طول ریشه، وزن خشک، وزن دانه، تعداد دانه در سبیله، وزن گاز سبیله، شاخص برداشت و عملکرد دانه در نسل‌های مختلف مورد انسازه‌گیری و پایداری برداری قرار گرفت. نتایج حاصل از تجزیه و ارائه نشان داد که میانگین مربعات نسل‌ها برای تمام صفات معنی‌دار بود. این نتایج میانگین نسل‌ها برای صفات مورد بررسی صورت گرفت و نتایج نشان داد که صفات طول ریشه، تعداد اثرات افزایشی و گالیتی کنترل می‌شود و در کنترل سایر صفات علی‌که بدتر اثر می‌کند. این

ایپستازی نیز موتور می‌باشد. هم‌چنین مشخص شد که واریانس گالیتی بیشتر نشان داد کنترل توارث صفات به هدف دارد. ضمناً برای صفات مورد بررسی متوسط توارث پذیری همومی بین ۱۹/۶۷۵ تا ۲۰/۸۵۰ تجربه زده شد و تعداد زن برای صفات مذکور حدوداً ۱ تا ۶ نژد برآورد گردید.

واژه‌های کلیدی: تجزیه میانگین نسل‌ها، تعداد زن، وراثت پذیری همومی، جو، صفات مرتبط با عملکرد

مقدمه

برآورد تعداد زنده‌ای کنترل کننده عملکرد دانه و صفات مربوط با آن و تعیین نحوه توارث و میزان وراثت پذیری هر یک از آنها می‌تواند در انتخاب روش‌های اصلاحی مناسب برای هر یک از آنها بسیار مفید باشد. یکی از مناسب‌ترین روش‌های تجزیه و ایپستازی، روش تجزیه میانگین نسل‌ها می‌باشد که با این روش توان علایه اثرات افزایشی و آثار غلابیتی، آنر ایپستازی را نیز تجربه نموده (۱۳۵۰). با ارقاق گوناگون جو و روی صفات متغیری تحقیقاتی در دنیا انجام پذیرفته است. از جمله با

1. استادان برنامه‌ریزی و تحقیقات، مرکز بیولوژی معماری، مرکز ارشدین علوم معلی، تکمیلی و برنامه‌ریزی پیشرفت، و علوم محیطی کرمان
2. به ترتیب استاد و استادیار زراعت و اصلاح بیولوژی، دانشکده دانشگاه تهران
3. دانشجویی کارشناسی ارشد، زنده‌ای، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

baghzadeh@ic.ac.ir: مستند مکاتبات، پست الکترونیکی: *
روش تجزیه میانگین نسل مشخص شد. همچنین در این مطالعه میزان توزیع ذیلی عمومی برای هر صفت تخمین زده شد و با برآورد تعداد ذیلی کننده هر صفت نهایتاً به‌طور روش اصلاحی برای هر صفت مشخص و پیشنهاد شد است.

مواد و روش‌ها
به مانور برداری و وراثت ذیلی و تعداد ذیلی‌های کننده عمومی و برخی صفات وابسته به آن در گیاه جو، بذور و دیگر و نسل‌های تا مرحلهSR سربه و نسل‌های تا مرحلهSR و MR برون در طرح بیکها کام لاد تصادفی به سه تکرار در مزرعه‌های ذیلی کننده که در شرایط تعریض به آب و هوای المرمیر و نسل‌های تا مرحلهSR و MR برون در طرح بیکها کام لاد تصادفی به سه تکرار در مزرعه‌های ذیلی کننده که در شرایط تعریض به آب و هوای المرمیر و نسل‌های تا مرحلهSR و MR برون در طرح بیکها کام لاد تصادفی به سه تکرار در مزرعه‌های ذیلی کننده که در شرایط تعریض به آب و هوای المرمیر و نسل‌های تا مرحلهSR و MR برون در طرح بیکها کام لاد تصادفی به سه تکرار در مزرعه‌های ذیلی کننده که در شرایط تعریض به آب و هوای المرمیر و نسل‌های تا مرحلهSR و MR برون در طرح بیکها کام لاد تصادفی به سه تکرار در مزرعه‌های ذیلی کننده که در شرایط تعریض به آب و هوای المرمیر و نسل‌های تا مرحلهSR و MR برون در طرح بیکها کام لاد تصادفی به سه تکرار در مزرعه‌های ذیلی کننده که در شرایط تعریض به آب و هوای المرمیر و نسل‌های تا مرحلهSR و MR برون در طرح بیکها کام لاد تصادفی به سه تکرار در مزرعه‌های ذیلی کننده که در شرایط تعریض به آب و هوای المرمیر و نسل‌های تا مرحلهSR و MR برون در طرح بیکها کام لاد تصادفی به سه تکرار در مزرعه‌های ذیلی کننده که در شرایط تعریض به آب و هوای المرمیر و نسل‌های تا مرحلهSR و MR برون در طرح بیکها کام لاد تصادفی به سه تکرار در مزرعه‌های ذیلی کننده که در شرایط تعریض به آب و هوای المرمیر و نسل‌های تا مرحلهSR و MR برون در طرح بیکها کام لاد تصادفی به سه تکرار در مزرعه‌های ذیلی کننده که در شرایط تعریض به آب و هوای المرمیر و نسل‌های تا مرحلهSR و MR برون در طرح بیکها کام لاد تصادفی به سه تکرار در مزرعه‌های ذیلی کننده که در شرایط تعریض به آب و هوای المرمیر و نسل‌های تا مرحلهSR و MR برون در طرح بیکها کام لاد تصادفی به سه تکرار در مزرعه‌های ذیلی کننده که در شرایط تعریض به آب و هوای المرمیر و نسل‌های تا مرحلهSR و MR برون در طرح بیکها کام لاد تصادفی به سه تکرار در مزرعه‌های ذیلی کننده که در شرایط تعریض به آب و هوای المرمیر و نسل‌های تا مرحلهSR و MR برون در طرح بیکها کام لاد تصادفی به سه تکرار در مزرعه‌های ذیلی کننده که در شرایط تعریض به آب و هوای المرمیر و نسل‌های تا مرحلهSR و MR برون در طرح بیکها کام لاد تصادفی به سه تکرار در مزرعه‌های ذیلی کننده که در شرایط تعریض به آب و هوای المرمیر و نسل‌های تا مرحلهSR و MR برون در طرح بیکها کام لاد تصادفی به سه تکرار در مزرعه‌های ذیلی کننده که در شرایط تعریض به آب و هوای المرمیر و نسل‌های تا مرحلهSR و MR برون در طرح بیکها کام لاد تصادفی به سه تکرار در مزرعه‌های ذیلی کننده که در شرایط تعریض به آب و هوای المرمیر و نسل‌های تا مرحلهSR و MR برون در طرح بیکها کام لاد تصادفی به سه تکرار در مزرعه‌های ذیلی کننده که در شرایط تعریض به آب و هوای المرمیر و

Downloaded from jshnar.iut.ac.ir at 5:30 IRDT on Saturday August 24th 2019
پراورد وراثت پذیری و زن‌های کننده عملکرد دانه و برخی صفات مرتبط با آن...

۵۹

در انتهای بهنامه عداد فاکتور موثر کننده هر صفت، روشن پاسن (۴۰) ۲۱ و فرمول زیر استفاده شد: گرفت.

\[F_{\text{این}} = \frac{\text{میانگین و این‌تراز‌های فاصله‌ای}}{0} \]

\[\text{و این‌تراز‌های فاصله‌ای فاصله‌ای} \]

نتایج و بحث

جدول ۱ میانگین و انحراف معیار هر یک از صفات اندازه‌گیری شده در سه‌الیه مختلف را نشان می‌دهد. میزان برخی این‌تراز نسبت به میانگین و بالینی می‌توان مورد وجوه آمار غلیب‌ی در کننده کننده این صفات بهترین مدل در حدود ۱ از این‌تراز شده است. نتایج نشان می‌دهند که این مدل‌ها به کمک آزمون مقیاس‌شمارک مورد بررسی قرار گرفته و بهترین مدل برای هر یک از صفات بر مبنای آزمون کاهو مشخص گردید (۰/۴۵۰۵۳۵). سپس مقادیر واریانس گاهانی (\(\text{VAR}_1\))، واریانس میانگین‌های ناتمام (\(\text{VAR}_2\)), واریانس بوته‌های (\(\text{VAR}_3\)), و میانگین نتایج (\(\text{VAR}_4\)), آنها (\(\text{VAR}_1\)), میانگین واریانس‌های نتایج (\(\text{VAR}_2\)), واریانس نسل‌های فرق ناپایدار (\(\text{VAR}_3\)) و واریانس میانگین‌های نسل‌های فرق تابیترو (\(\text{VAR}_4\)) محاسبه گردیدند و به کمک این مقادیر و با توجه به فرمول‌های زیر:

\[V_{\text{ین}} = \frac{1}{\text{Y}} \times \text{D} + \frac{1}{\text{Y}} \times \frac{1}{\text{H}} + \frac{1}{\text{E}} \]

\[V_{\text{ین}} = \frac{1}{\text{Y}} \times \text{D} + \frac{1}{\text{Y}} \times \frac{1}{\text{H}} + \frac{1}{\text{E}} \]

\[W_{\text{ین}} = \frac{1}{\text{Y}} \times \frac{1}{\text{D}} + \frac{1}{\text{H}} + \frac{1}{\text{E}} \]

\[V_{\text{ین}} = \frac{1}{\text{Y}} \times \frac{1}{\text{D}} + \frac{1}{\text{H}} + \frac{1}{\text{E}} \]

اهواز واریانس زن‌تکی و هم‌چنین واریانس آثار محیطی مصنوعی با ایجاد چهار مداره در ۳ سری برای محاسبه نتایج پذیری عمومی از \(h_{\text{ین}}\) روشن‌های مهم و کارا (۸۰) و آرمان (۶۶) به ترتیب ترتیب بررسی واریانس‌های زیر استفاده شد.

\[h_{\text{ین}} = \frac{\sqrt{V_{\text{ین}} \times V_{\text{ین}} - V_{\text{ین}}}}{V_{\text{ین}}} \]

\[h_{\text{ین}} = \frac{\sqrt{V_{\text{ین}} \times V_{\text{ین}} - V_{\text{ین}}}}{V_{\text{ین}}} \]

\[h_{\text{ین}} = \frac{\sqrt{V_{\text{ین}} \times V_{\text{ین}} - V_{\text{ین}}}}{V_{\text{ین}}} \]

\[h_{\text{ین}} = \frac{\sqrt{V_{\text{ین}} \times V_{\text{ین}} - V_{\text{ین}}}}{V_{\text{ین}}} \]
جدول 1. میانگین و اشباع معنی صفات مورد بررسی در نسل‌های مختلف

نسل	وزن سبله	طول سبله	تعداد سبله	طول راه‌رفت و بازگشت	وزن دانه	تعداد دانه	طول دانه	وزن دانه (گرم)	در بونه (گرم)	درادای	علامت‌های مختلف بونده‌های این می‌توانند ناشی از

جدول 2. برآورده ایجادی زننگی میانگین‌ها برای صفات مختلف مورد بررسی

<table>
<thead>
<tr>
<th>χ²</th>
<th>[l]</th>
<th>[m]</th>
<th>[h]</th>
<th>[d]</th>
<th>صفت</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>وزن سبله (گرم)</td>
</tr>
<tr>
<td></td>
<td>20/051/09</td>
<td>2/250/20</td>
<td>2/150/20</td>
<td>2/450/20</td>
<td>1/050/10</td>
</tr>
<tr>
<td></td>
<td>2/250/20</td>
<td>2/150/20</td>
<td>2/450/20</td>
<td>1/050/10</td>
<td>2/250/20</td>
</tr>
<tr>
<td></td>
<td>2/150/20</td>
<td>2/450/20</td>
<td>1/050/10</td>
<td>2/250/20</td>
<td>2/150/20</td>
</tr>
<tr>
<td></td>
<td>2/450/20</td>
<td>1/050/10</td>
<td>2/250/20</td>
<td>2/150/20</td>
<td>2/450/20</td>
</tr>
</tbody>
</table>

توجه کووال (16) در مورد صفت طول زمینک صورت گرفته و تعداد سبله و وزن صدایه و تعداد سبله و وزن صدایه و تعداد سبله، وزن صدایه و تعداد دانه در سبله و صدای بردادشت آثار غلیبت [I] و آثار مقاول غلیبت x غلیبت [I] درادای علامت‌های مختلف بونده‌های این می‌توانند ناشی از ایستیزی از نوع مضاف (Duplicate type) باشد. در مطالعه‌ای که توسط شارما و همکاران (2002) روي تعداد از صفات ویسته به عملکرد از جمله عملکرد دانه در سبله، وزن هزار دانه

* گیاهی ندار
 * 100% تریم ندار
 * 50% تریم ندار
 * 25% تریم ندار
 * 10% تریم ندار
 * 0% تریم ندار

25%
جدول 3: پارامترهای اندازه‌گیری شده در نسل‌های F₀ و F₁

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>وزن</th>
<th>تعداد دانه</th>
<th>روشک</th>
<th>صفحه</th>
<th>رسوبه</th>
<th>سبکه</th>
<th>وزن</th>
<th>تعداد دانه</th>
<th>دانه دربوته</th>
<th>24/7/31</th>
<th>17/8/2</th>
<th>17/9/0</th>
<th>24/9/22</th>
<th>5/30</th>
<th>0/11</th>
<th>7/0/24</th>
<th>5/50</th>
<th>0/11</th>
<th>8/1/19</th>
<th>8/57/0</th>
<th>8/57/0</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن (گرم)</td>
<td>0.12</td>
<td>1/46</td>
<td>0.30</td>
<td>0.70</td>
<td>0.45</td>
<td>0.30</td>
<td>0.12</td>
<td>1/46</td>
<td>0.30</td>
<td>0.70</td>
<td>0.45</td>
<td>0.30</td>
<td>0.12</td>
<td>0.24</td>
<td>0.58</td>
<td>0.68</td>
<td>0.70</td>
<td>0.45</td>
<td>0.30</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>تعداد دانه (عدد)</td>
<td>5/30</td>
<td>1/11</td>
<td>0/05</td>
<td>0/06</td>
<td>0/16</td>
<td>0/16</td>
<td>0/06</td>
<td>0/16</td>
<td>0/16</td>
<td>0/05</td>
<td>0/06</td>
<td>0/16</td>
<td>0/16</td>
<td>0/06</td>
<td>0/16</td>
<td>0/16</td>
<td>0/05</td>
<td>0/06</td>
<td>0/16</td>
<td>0/16</td>
<td></td>
</tr>
<tr>
<td>نسبت وزن دانه (عدد)</td>
<td>5/30</td>
<td>1/11</td>
<td>0/05</td>
<td>0/06</td>
<td>0/16</td>
<td>0/16</td>
<td>0/06</td>
<td>0/16</td>
<td>0/16</td>
<td>0/05</td>
<td>0/06</td>
<td>0/16</td>
<td>0/16</td>
<td>0/06</td>
<td>0/16</td>
<td>0/16</td>
<td>0/05</td>
<td>0/06</td>
<td>0/16</td>
<td>0/16</td>
<td></td>
</tr>
</tbody>
</table>

روش‌های پیشنهادی برای تحقق مشخصات شده و فشار مؤثر بر پارامترهای مربوط به تعداد دانه و جرم دانه نشان می‌دهد. با توجه به مقایسه محاسبه شده و رابطه هر یک از این معیارهای آماری با واریانس‌های اف‌واکسپی و غالبیت و برای هم‌صحت صفات مورد بررسی (H.D) مقایسه محاسبه شد (جدول 4). برای کلیه صفات مورد بررسی (D) مقایر واریانس غالبیت (H) به مرحله از واریانس اف‌واکسپی (D) برگرداند می‌باشد که این نتیجه نیاز دارد بر آمارالی مشخص ویژه برای استفاده از روش‌های اصلاحی محاسبه برقراری داشته که در نهادهای صفات مذکور داده‌کننده بوده و در نهادهای مورد بررسی (هشتم صفت) تأثیر زیادی نداشته است که این نتیجه نیاز دارد بر استفاده از روش‌های اصلاحی یا میانگین واریانس نسل‌های تقریباً نیاز به انتخاب وضعیت شاخصی می‌باشد که در نهادهای مورد بررسی (هشتم صفت) تأثیر زیادی نداشته است که این نتیجه نیاز دارد بر استفاده از روش‌های اصلاحی یا میانگین واریانس نسل‌های تقریباً نیاز به انتخاب وضعیت شاخصی می‌باشد که در نهادهای مورد بررسی (هشتم صفت) تأثیر زیادی نداشته است که این نتیجه نیاز دارد بر استفاده از روش‌های اصلاحی یا میانگین واریانس نسل‌های تقریباً نیاز به روش‌های اصلاحی یا میانگین واریانس نسل‌های تقریباً نیاز به انتخاب وضعیت شاخصی می‌باشد که در نهادهای مورد بررسی (هشتم صفت) تأثیر زیادی نداشته است که این نتیجه نیاز دارد بر استفاده از روش‌های اصلاحی یا میانگین واریانس نسل‌های تقریباً نیاز به انتخاب وضعیت شاخصی می‌باشد که در نهادهای مورد بررسی (هشتم صفت) تأثیر زیادی نداشته است که این نتیجه نیاز دارد بر استفاده از روش‌های اصلاحی یا میانگین واریانس نسل‌های تقریباً نیاز به انتخاب وضعیت شاخصی می‌باشد که در نهادهای مورد بررسی (هشتم صفت) تأثیر زیادی نداشته است که این نتیجه نیاز دارد بر استفاده از روش‌های اصلاحی یا میانگین واریانس نسل‌های تقریباً نیاز به انتخاب وضعیت شاخصی می‌باشد که در نهادهای مورد بررسی (هشتم صفت) تأثیر زیادی نداشته است که این نتیجه نیاز دارد بر استفاده از روش‌های اصلاحی یا میانگین واریانس نسل‌های تقریباً نیاز به انتخاب وضعیت شاخصی می‌باشد که در نهادهای مورد بررسی (هشتم صفت) تأثیر زیادی نداشته است که این نتیجه نیاز دارد بر استفاده از روش‌های اصلاحی یا میانگین واریانس نسل‌های تقریباً نیاز به انتخاب وضعیت شاخصی می‌باشد که در نهادهای مورد بررسی (هشتم صفت) تأثیر زیادی نداشته است که این نتیجه نیاز دارد بر استفاده از روش‌های اصلاحی یا میانگین واریانس نسل‌های تقریباً نیاز به انتخاب وضعیت شاخصی می‌باشد که در نهادهای مورد بررسی (هشتم صفت) تأثیر زیادی نداشته است که این نتیجه نیاز دارد بر استفاده از روش‌های اصلاحی یا میانگین واریانس نسل‌های تقریباً نیاز به انتخاب وضعیت شاخصی می‌باشد که در نهادهای مورد بررسی (هشتم صفت) تأثیر زیادی N

چکیده

در این مطالعه، بررسی و پیشنهاد مشخصات شده در نسل‌های F₁ و F₀ انجام شد. نتایج نشان داد که در نهادهای مورد بررسی، نسبت وزن دانه و نسبت وزن دانه در بین نسل‌های مختلف متفاوت بوده و در نتیجه میانگین واریانس نسل‌های تقریباً بهتر استفاده شود. این نتایج نشان‌دهنده اهمیت استفاده از روش‌های پیشنهادی برای تحقق مشخصات شده و ادامه مطالعات آینده در این زمینه می‌باشد.
جدول 2. برآورد اجزای تیغه برای صفات مختلف مورد بررسی

<table>
<thead>
<tr>
<th>صفات</th>
<th>وزن</th>
<th>طول</th>
<th>تعداد</th>
<th>وزن کاه شاخص عمکردن دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>سبله</td>
<td>0.87</td>
<td>0.82</td>
<td>0.88</td>
<td>0.89</td>
<td>0.90</td>
<td>0.91</td>
<td>0.92</td>
</tr>
<tr>
<td>میانگین</td>
<td>0.87</td>
<td>0.82</td>
<td>0.88</td>
<td>0.89</td>
<td>0.90</td>
<td>0.91</td>
<td>0.92</td>
</tr>
<tr>
<td>میانگین</td>
<td>0.87</td>
<td>0.82</td>
<td>0.88</td>
<td>0.89</td>
<td>0.90</td>
<td>0.91</td>
<td>0.92</td>
</tr>
<tr>
<td>تعداد</td>
<td>0.87</td>
<td>0.82</td>
<td>0.88</td>
<td>0.89</td>
<td>0.90</td>
<td>0.91</td>
<td>0.92</td>
</tr>
</tbody>
</table>

جدول 5. برآورد وراثی عوامل و تعداد این برای صفات مختلف مورد بررسی

<table>
<thead>
<tr>
<th>صفات</th>
<th>وزن</th>
<th>طول</th>
<th>تعداد</th>
<th>وزن کاه شاخص عمکردن دانه</th>
<th>وزن کاه شاخص عمکردن دانه</th>
<th>وزن کاه شاخص عمکردن دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>سبله</td>
<td>0.87</td>
<td>0.82</td>
<td>0.88</td>
<td>0.89</td>
<td>0.90</td>
<td>0.91</td>
</tr>
<tr>
<td>میانگین</td>
<td>0.87</td>
<td>0.82</td>
<td>0.88</td>
<td>0.89</td>
<td>0.90</td>
<td>0.91</td>
</tr>
<tr>
<td>میانگین</td>
<td>0.87</td>
<td>0.82</td>
<td>0.88</td>
<td>0.89</td>
<td>0.90</td>
<td>0.91</td>
</tr>
<tr>
<td>تعداد</td>
<td>0.87</td>
<td>0.82</td>
<td>0.88</td>
<td>0.89</td>
<td>0.90</td>
<td>0.91</td>
</tr>
</tbody>
</table>

پیوستگی، آثار ایستازی و غیره در این، لذا وجود احتمالی هر یک از موارد فوق، باعث برآورد تعداد کمتر از حد واقع زندهای در حال تفریق خواهد گردید (18 و 24). همچنین قابل ذکر است که دیوید همکران (11) براساس تجربی پیچ تحقیق مولکولی، متابولی مورد استفاده

1. احمدی، م. 1371. ارزیابی صفات کمی در اصلاح نباتات (ترجمه). انتشارات سازمان تحقیقات کشاورزی تهران، وزارت کشاورزی

2. رضایی، ن.، س. هوسون. 1375. تلمجع عمل زن و روشات پذیری برخی صفات زراعی در 17 تلافن سورگوم دانهای. مجله علوم کشاورزی 28 (3): 78-86

3. زهراوی، م. 1379. روشهایی تغییر مکان زندهای کنترل، صفات کمی، (QTL). سمینار زننیک جمعیت دورة دکتری اصلاح

62
نیاتان، دانشکده کشاورزی، دانشگاه تهران، کرج.

4. طالعی ع. 1379. مقدمه‌ای بر زنجیره پویش‌ریزی (ترجمه). انتشارات نشر علوم کشاورزی.
5. فرشادفر ع. 1377. کاربرد زنجیره کمی در اصلاح نیاتان. جلد اول، انتشارات دانشگاه رازی کرمانشاه.

8. قنادی، م. م. و قناده‌ها، ب. پذیری صمیمی و. ت. ترا. 1380. نحوه توارث مقاومت به بیماری شفیدک پودری جو در مرحله گیاه بالغ. مجله نهال و بذر 17(2): 150-155.