بررسی تغییرات تناول‌افزون و تناوریزون در زمان تخمیر (اکسیداسیون) و اثر آن روی شفافیت و رنگ کل در چای سیاه

پژوهش به منظور بررسی تغییرات تناول‌افزون و تناوریزون در زمان تخمیر (اکسیداسیون) و اثر آن بر روی شفافیت و رنگ کل در چای سیاه در فاصله زمانی ۱۳۸۳ در مرکز تحقیقات چای کشور در لاهیجان انجام گرفت. درصد تناوریزون، تناول‌افزون، رنگ کل و شفافیت در دو رقم اعشاری‌نشین ۱۰۰ و هزاری چپی، در زمان‌های بردانت خرد، مراد و مهم در زمان‌های تخمیر ۰،۴۰، ۱۲ و ۱۵۰ دقیقه اندزه‌گیری شد. براساس نتایج حاصل از این آزمایش علاوه بر تفاوتات زیستی ارقام مورد آزمایش در تولید مواد شیمیایی ایجادکننده کیفیت، تغییرات شرکت آب و هوایی در زمان‌های مختلف بردانت و همچنین زمان‌های مختلف تخمیر نیز مواد تا حد زیادی بر روی رنگ تناول‌افزون، تناوریزون، شفافیت و رنگ کل تأثیر گذاشت. همچنین این نتایج با اثر متقابل بیشتر می‌تواند در رقم "زمان بردانت" زمان تخمیر بر صفات تغییر کند. کیفیت چای سیاه بود. بر اثر عوارض هم‌سنجی بنچ چای مورد مطالعه نشان داد که به استنادی هم‌سنجی بین تناوریزون و شفافیت، هم‌سنجی بین سایر صفات در سطح احتمال ۱ درصد معنی‌دار بود. نتایج حاصل از تجزیه روابط گروه‌یونه‌ای زمان تخمیر به عوامل متغیر مستقل و هر یک از صفات مورد مطالعه به عوامل متغیر وابسته، رابطه رگسیونی خطی بسیار معنی‌داری بین زمان تخمیر با تناول‌افزون و شفافیت مشاهده شد. همچنین نتایج حاصل از تجزیه رگسیون چند متغیره بین شفافیت به عوامل متغیر وابسته با تناول‌افزون و تناوریزون به عنوان متغیر مستقل داده که به جستجو در ۵ درصد از تغییرات شفافیت به وسیله تناول‌افزون و تناوریزون توجیه می‌شود. همچنین در تجزیه رگسیون چند متغیره بین رنگ کل به عوامل متغیر وابسته و تناول‌افزون و تناوریزون به عنوان متغیر مستقل، پیش از ۲۳ درصد از تغییرات رنگ کل به وسیله تناول‌افزون و تناوریزون توجیه شد.

واژه‌های کلیدی: چای سیاه، زمان تخمیر، تناول‌افزون، تناوریزون، شفافیت، رنگ کل

مقدمه

چای یکی از محصولات اساسی و استاندارد کشور است. در حدود ۲۳۰۰۰ هزار تن از زمین‌های کشاورزی در کشور زیر کشت قرار دارد(۳). این یکی از مهم‌ترین مشکلات در صنعت چای کشور پا به کیفیت چای تولیدی است.

۱ ب. ترتیب دانشجوی سال کاشت‌کاهشی ارشد و استادیاران باغی، دانشکده علوم کشاورزی، دانشگاه گیلان
۲ استادیار زراعت و اصلاح نباتات، دانشکده علوم کشاورزی، دانشگاه گیلان
۳ مربی پژوهش مرکز تحقیقات چای کشور، لاهیجان
hassanpurm@yahoo.com

* سیستم مکانیکی، پست الکترونیکی:
مواد و روش‌ها
مواد گیاهی
این بررسی در مدل ضریعی 1383 در استادتکنیه‌ی دانشگاه شهید اتفاقی فیشا که 1500 متری شور رشته‌ای از عرض جغرافیایی 8° و 10° شمالی و طول جغرافیایی 77° و 79° شرقی و ارتفاع 10 متر از سطح دریا انجام شد. این پژوهش از نظر امید به خش صد و همچنین افتخاراتی استفاده گردید که از ویژگی‌های مانند هر سیس و یک نتیجه برخوردار بودند. اسکلت‌بندی و قرن‌پوش‌های یکاره‌های مناسب بود و عامل زراعی بر طور یکسان برای همه بقایا در نظر گرفته شد. در مجموع سه بار برداشت برگ سیب در ماه‌های خردمیل و دو ماه به‌هر (پر هر روز در زمان مناسب) به صورت استاندارد (یک گل‌هانه و یک برگ در یک گل‌هانه و دو برگ) انجام شد.

چابازی
برگ‌های چای پس از هر برداشت به آمایشگاه چابازی کاشف واقع در مرکز تحقیقات چای کشور در لاهیجان انتقال یافت. به منظور انجم فراوان پلاس (اولین مرحله چابازی) و به‌منظور درک کردن کدام نواحی مختلف فروآوری چای، مرحله اکسپانسیون دارای اهمیت این جهت است. نسبت به تولید دیگر می‌باشد و در این مرحله است که برای این خلقوه‌های گیاه شکست نشده، رنگ عطر و ظرفیت احیا سود و در زمان‌های اکسپانسیون، نمونه‌های میزان تناقلاتی و شفافیت که از همان تناقلاتی و شفافیت و نگرگ برای نیازهای آن‌ها و گزارش‌های مشابه دیگر بیشتر از عامل‌های مختلف ویژگی‌های شفافیت در چای سیب و اثر آن بر شفافیت و رنگ کل می‌باشد. در این مطالعه سعی شده است تا ضمن بررسی اثر رقیم، زمان برداشت و زمان تخمیر برگ سیب یا شفافیت مواد مولکول‌ها، اثرات آن را هم مورد مطالعه قرار گیرد.

مهمی در ابتدای کیفیت بهبود چای سیب ایفای نقش دارد از میزان مراحل مختلف فروآوری چای، مرحله اکسپانسیون از دو اهمیت برخورداری نسبت به تولید دیگر می‌باشد و در این مرحله است که بسیاری از ویژگی‌های کیفی چای شکست نشده، رنگ عطر و ظرفیت احیا شده است. تولید کیفیت‌های در زمان‌های اکسپانسیون یا (Theaflavins(TF)) و (Thearubigins (TR)) کیفیت سیب تأثیر مهمی می‌گذارند (1). تناقلاتی در به رنگ زرد تناقلاتی در محلول دیده می‌شود و در اندازه‌گیری شفافیت نمونه که یک ویژگی مهم چای می‌باشد. سیلیق (Brightness (B)) نتش دارد. غلظت بالای تناقلاتی در چای سیب حدود 1 تا 3 درصد است. تناقلاتی به رنگ رنگ مایل به صورت در محلول دیده می‌شود. تناقلاتی این کیفیت مهمی در ابتدای رنگ کل می‌باشد ایفا (Total color) می‌کند (1) و (20). عاملی که بر تشکیل و تجزیه تناقلاتی و تناقلاتی تأثیر می‌گذارد یا نهایی است. بر کیفیت نهایی چای نیز می‌گذارد. میزان تولید تناقلاتی و تناقلاتی در رقمهای مختلف در طول تخمیر هنگام کشت به‌طور متفاوت است. همچنین هر رقم در زمان‌های مختلف برداشت، میزان متفاوت از تناقلاتی و تناقلاتی را تولید می‌کند. میزان تناقلاتی و تناقلاتی تحت تأثیر دما و طول مدت تخمیر نیز تغییر می‌کند (11، 12) و در همکاران (18) با بررسی شاخص‌های کیفی در ارگم مختلف گزارش نموده که میزان تولید تناقلاتی و تناقلاتی در بین هم‌گروه‌های ایست و یا ویژگی به هم واریازیتی ارکام مختلف در تولید مواد شیمیایی پیش‌ساز تناقلاتی و تناقلاتی‌های است. دکا و بهانی‌آرا (9) نیز با بررسی شاخص‌های کیفی چای سیب 48
کاهش رطوبت برق سیب، برگ‌ها در دستگاه تراف (Trough) مدت 14 ساعت در دماهای 25-30 درجه سانتی‌گراد قرار داده می‌شود به دنبال رسیدن وزن بیش از دو قسمت. بعد از پلاس برق سبز چای، خرد کرون گره‌های پلاستیک شده به وسیله دستگاه سی آمپاس گرفته می‌شود. سپس با استفاده از الکترودی می‌تواند در دستگاه خشک گر می‌شود. شدیده از هم جدا شدن. آنگاه اکسیداسیون در زمان‌های 30، 60، 120 و 150 دقیقه انجام شد و نمونه‌های اکسید شده در دستگاه خشک گر می‌شود. تری (Flued bed drier) در دستگاه خشک گر می‌شود. نمونه‌های اکسید شده در دستگاه خشک گر می‌شود. نمونه‌های اکسید شده در دستگاه خشک گر می‌شود.

بررسی شیمیایی

آزمایش رنگ سنتی برای تعیین درصد تلافاولین. تلافاولین، شفافیت و رنگ خاکی طبق روش ماهانتا و بار (10) و وا استفاده از اسپیکروتومو تری (Flued bed drier) در دستگاه خشک گر می‌شود. نمونه‌های اکسید شده در دستگاه خشک گر می‌شود.

تجزیه‌ای آماری

آزمایش در قالب طرح کرده‌های دوباره برخی شده با طرح یا بی‌طراحی کل در صورت انجام شد. به عنوان استاندار نهایی، به عنوان استاندار نهایی، به عنوان استاندار نهایی. به عنوان استاندار نهایی، به عنوان استاندار نهایی. به عنوان استاندار نهایی، به عنوان استاندار نهایی.

نتایج و بحث

بررسی نتایج حاصل از جدول تجزیه واریانس نشان داد که به
جدول 1. تجزیه و ارتباط بین رقم، زمان برداشت و زمان تخمیر بر صفات تعیین کننده گیفت چای سیب

<table>
<thead>
<tr>
<th>میانگین معنویت</th>
<th>درجه آزادی</th>
<th>تخفیفات (%)</th>
<th>رنگ کل (%)</th>
<th>تقارنیز (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/0010</td>
<td>0/0011</td>
<td>0/0006</td>
<td>0/022</td>
<td>0/098</td>
</tr>
<tr>
<td>0/0045</td>
<td>0/0009</td>
<td>0/0016</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0/0244</td>
<td>0/0266</td>
<td>0/0767</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0/0509</td>
<td>0/0599</td>
<td>0/0550</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0/0611</td>
<td>0/0542</td>
<td>0/0512</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0/0676</td>
<td>0/0666</td>
<td>0/0650</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0/0011</td>
<td>0/0005</td>
<td>0/0004</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

** میان دار در سطح احتمال 1 درصد

چایسازی مورد استفاده قرار می‌گیرند. در طی زمان‌های برداشت منفی شدن تعیین شود.

نتایج بررسی ضرایب همبستگی ساده بین صفات کیفی مورد آزمایش یافته این بود که به استثنای همبستگی بین تقارنیز و شفافیت همبستگی بسیار معناً داری بین سایر صفات در سطح احتمال 1 درصد مشاهده شد (جدول 3). بررسی احتمال جدول 3 نشان داد که بین درصد تقارنیز و تقارنیز و شفافیت همبستگی مثبت بسیار معنی‌داری در سطح احتمال 1 درصد دیده شد. این همبستگی احتمالاً به علت وجود پیش‌سازه مشترک شیمیایی (یلی فلتاها) برای تولید این دو ماده و همچنین تبدیل تقارنیز به تقارنیز به عنوان یکی از راه‌های تولید تقارنیز می‌باشد. این نشان دهنده (13) و (14) نیز همبستگی مثبت بین تقارنیز و تقارنیز را گزارش نمودند. بین تقارنیز و رنگ کل و نیز تقارنیز و رنگ کل همبستگی
جدول 2. مقایسه میانگین اثر متقابل سه جانبه رقم × زمان برداشت × زمان تخمیر بر صفات تعیین کننده

<table>
<thead>
<tr>
<th>صفات</th>
<th>تیمارهای آزمایش</th>
<th>شفافیت (%)</th>
<th>ترکیبی (%)</th>
<th>تنافیلاتون (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>رقم 100 × زمان برداشت خرداد × زمان تخمیر 30 دقیقه</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>رقم 100 × زمان برداشت خرداد × زمان تخمیر 60 دقیقه</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>رقم 100 × زمان برداشت مرداد × زمان تخمیر 90 دقیقه</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>رقم 100 × زمان برداشت مرداد × زمان تخمیر 120 دقیقه</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>رقم 100 × زمان برداشت مرداد × زمان تخمیر 150 دقیقه</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>رقم 100 × زمان برداشت مرداد × زمان تخمیر 180 دقیقه</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

اعلان هر سالون که دارای خروج مشابه نیستند، اختلاف معنی‌داری در سطح احتمال 5 درصد دارند.
جدول 3: همبستگی ساده بین صفات تعیین کننده کیفیت چای سیاه

<table>
<thead>
<tr>
<th>شفتیت</th>
<th>نتایج‌ترین تناقلاین</th>
<th>رنگ کل</th>
<th>نتایج‌ترین تناقلاین</th>
<th>شفتیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰/۳۰**</td>
<td>۱</td>
<td>۰/۴۷**</td>
<td>۱</td>
</tr>
<tr>
<td>۱</td>
<td>۰/۴۲**</td>
<td>۱</td>
<td>۰/۴۲**</td>
<td>۱</td>
</tr>
<tr>
<td>۱</td>
<td>۰/۴۵**</td>
<td>۱</td>
<td>۰/۴۵**</td>
<td>۱</td>
</tr>
</tbody>
</table>

:** معنادار در سطح احتمال ۱ درصد

میزان همبستگی کاهش یافته (شکل ۱) از این نتایج مشاهده را گزارش نموده اند. کاهش میزان همبستگی تناقلاین‌های غلبه و افزایش میزان همبستگی سطح سرشاری شیمیایی آن و همچنین تبدیل تناقلاین‌های به ترکیبات دیگر به خصوص تناول‌های زمین به صورت زیر برآورد شد:

\[Y = 3/792 - 0/0023X \]

براساس رابطه ۲، میزان شفافیت با گذشته زمان تخمدآوری کاهش یافته (جدول ۱ و شکل ۱) و ضریب تبدیل نیز برابر با ۰/۹۴/۳۲/۳ بود. کاهش در این افزایش زمان تخمدآوری شفافیت می‌تواند به علت تولید ترکیبات کمپلکس‌های یا ترکیبات با وزن مولکولی بالا مثل تانریوزین‌ها باشد. همچنین کاهش میزان تناقلاین‌های نیز می‌تواند موجب کاهش میزان شفافیت شود که با توجه به همبستگی بالای تناقلاین و شفافیت چینه هر دوی این مقادیر به نظر می‌رسد. از این رو برخی از این تناقلاین‌ها با رنگ کل و شفافیت در نوع درصد متغیر وابسته (۷۲٪) رابطه رگرسیونی خشی بسیار معنی‌داری (α = ۰/۰۱) بین زمان تخمدآوری و جریان تناقلاین و زمان تخمدآوری و درصد شفافیت مشاهده شد (جدول ۳ و شکل ۵) بنابراین بین زمان تخمدآوری و سایر متغیرها معنی‌دار نبود. رابطه رگرسیون بین زمان تخمدآوری و جریان تناقلاین درصد تناقلاین به صورت زیر بود:

\[Y = 3/792 - 0/0023X \]

براساس تابع حاصل از تجزیه روابط رگرسیونی بین مقادیر زمان تخمدآوری به عنوان متغیر مستقل (X) و همزمان از خصوصیات کیفی مورد مطالعه معنی‌دار درصد تناقلاین‌ها شفافیت، رنگ کل و شفافیت به عنوان متغیر وابسته (Y) بین زمان تخمدآوری و درصد شفافیت و زمان تخمدآوری و درصد شفافیت مشاهده شد (جدول ۳ و شکل ۵) بنابراین بین زمان تخمدآوری و سایر متغیرها معنی‌دار نبود. رابطه رگرسیون بین زمان تخمدآوری و جریان تناقلاین درصد تناقلاین به صورت زیر بود:

\[Y = 3/792 - 0/0023X \]
بسا تغییرات تنافلاوین و تناوریپن در زمان تخمیر (آکسیداسیون) و اثر آن...

جدول ۴ تجزیه روابط رگرسیونی بین زمان تخمیر بر حسب دقفه به عنوان متغیر مستقل (X) و صفات تعیین کننده

<table>
<thead>
<tr>
<th>صفت تعیین کننده</th>
<th>تغییرات</th>
<th>میانگین مربعات</th>
<th>دارا از آزادی</th>
</tr>
</thead>
<tbody>
<tr>
<td>زمان تخمیر (مینیما)</td>
<td>رابطه خطی</td>
<td>0/۰۱۸۲</td>
<td>۳</td>
</tr>
<tr>
<td>رابطه خطی</td>
<td>0/۰۱۳۷</td>
<td>۴</td>
<td></td>
</tr>
<tr>
<td>میانگین</td>
<td>0/۰۱۵۲</td>
<td>۱</td>
<td></td>
</tr>
</tbody>
</table>

** معنی دارد در سطح احتمال ۱ درصد.

![نمودار]

شکل ۱ رگرسیون خطی بین زمان تخمیر بر حسب دقفه به عنوان متغیر مستقل (X) و صفات تعیین کننده

جدول ۵ تجزیه رابطه رگرسیونی چند متغیره بین مقدار تنافلاوین (TF) و تناوریپن (TR) بر حسب (TC) درصد با میزان رنگ کل

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>درجه آزادی</th>
<th>مدل رگرسیون</th>
<th>ضرایب رگرسیون</th>
<th>TR</th>
<th>TF</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF-TR</td>
<td>۲</td>
<td>۰/۰۱۶۳</td>
<td>۲/۳۷۸</td>
<td>۰/۰۶۱۵**</td>
<td></td>
</tr>
<tr>
<td>باتی مانده</td>
<td>۸۸</td>
<td>۰/۰۱۷۸</td>
<td>۰/۰۳۷۷**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>۱</td>
<td>۰/۰۹۹۴**</td>
<td>۰/۰۳۷۷**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>باتی مانده</td>
<td>۸۷</td>
<td>۰/۰۱۷۸</td>
<td>۰/۰۳۷۷**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** معنی دارد در سطح احتمال ۱ درصد.

برآورد گردید (جدول ۵):

\[TC = ۰/۰۵۶۳۶ TR + ۰/۷۲۶۵ TF \]

بر این اساس حدود ۲۳ درصد از تغییرات رنگ کل به وسیله تنافلاوین و تناوریپن توجه گردید. درصد رنگ کل نسبت مستقیم با درصد تنافلاوین و تناوریپن دارد و لذا افزایش میزان
جدول ۴: تجزیه رابطه رگرسیونی جنس متغیر با مقادیر تنافاوان (TF) و تاناروپیزن (TR) بر حسب درصد با میزان شفافیت (B)

<table>
<thead>
<tr>
<th>ضرایب رگرسیونی</th>
<th>مدل رگرسیونی</th>
<th>درجه آزادی</th>
<th>میانگین مربعات</th>
<th>عرض از مبدأ</th>
<th>TF</th>
<th>TR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>R²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF</td>
<td>۱</td>
<td>۱</td>
<td>۲۵/۴۲**</td>
<td>۲/۵۱۲**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>باقی مانده</td>
<td>۱</td>
<td>۸۸</td>
<td>۰/۴۳۱۲**</td>
<td>۰/۲۵۷۵۹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF - TR</td>
<td>۱</td>
<td>۲</td>
<td>۰/۴۱۵۲**</td>
<td>۰/۵۶۵۵**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>باقی مانده</td>
<td>۱</td>
<td>۸۷</td>
<td>۰/۴۲۷۶**</td>
<td>۰/۴۰۷۲**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** متنی مبنا در سطح احتمال ۱ درصد.

میزان مورد استفاده

۱. قاچقشی، م. ۱۳۷۹. وکالت‌های بوشهری: در طول عصر آن. مجله خوزستان ۲۱:۱۱۴-۴۰.

۲. قاچقشی، م. ۱۳۸۳. بهره‌های زبانی شرایط مرحله تخمیر اکسیداتیو در فرآیند تولید چای سیاه ایران. پایان نامه کارشناسی ارشد، دانشگاه صنعتی امیرکبیر، تهران.

۳. حسن پور اصلی، م. ۱۳۷۷. چایکاری و فن/وری چای. انتشارات دانشگاه کیان.

۴. حسن تزاد، ر. ۱۳۷۸. بررسی عوامل موثر بر کیفیت چای در مراحل فرآیند تولید آن. پایان نامه کارشناسی ارشد باسلامی، دانشگاه علم و فنون مازندران.

۵. روضگری حکمتیار، ش. ر. ۱۳۸۱. تشکیل عطر و طعم در چای سیاه. مجله چای، انتشارات مرکز تحقیقات چای کشور، لاهیجان.

۶. سجادی، م. ۱۳۷۰. بررسی ترکیبات شیمیایی برگ سیب چای و اندازه‌گیری تانن در نمونه‌های مختلف آن. پایان نامه کارشناسی، مرکز آموزش عالی فرهنگیان شهید بهشتی لاهیجان.
7. سراوانی، کد. 1384. تخمین کیفیت چای سیاه با استفاده از تجزیه ترکیبات شیمیایی و آزمون حسی. پایان نامه کارشناسی ارشد
باغبانی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران.
8. مرادی، م. و ف. اشکنی. 1388. بررسی ترکیبات شیمیایی برش سیب و چای خشک و اثرات آن در کیفیت چای استحصالی.
طرح پژوهشی دانشگاه آزاد اسلامی واحد لاهیجان.