تهیه نقشه جنگل‌های طبیعی استان زنجان با استفاده از داده‌های سنجیده + MAHORE LNDST

چکیده

جنگل‌های طبیعی استان زنجان یکی از مناطق کوهستانی باعث شده‌اند. تهیه نقشه جنگل‌های زنجان را مانع و سایر پیش‌دهنده‌ها از قبیه به‌خصوص در مناطق کوهستانی مشترک و پر‌زیسته است. برای این منظور استفاده از داده‌های MAHORE ثابت و تکنیک مکانیکی متوسط را به یک حلق مناسب به‌منظور گرفتن می‌رسد. در این بررسی از تصاویر فضای ماهواره‌ای لندست + MAHORE به سال ۲۰۰۲ برای مکان یابی و تهیه نقشه جنگل‌های طبیعی استان زنجان استفاده شده است. تحلیل داده‌های اصلی (PCA) زنجان استفاده شده است. تحلیل منظور استخراج مولفه‌های اصلی و کاهش حجم انتخاب شده و به عنوان نتیجه در نظر گرفته شد. با استفاده از نتایج حاصل، در داده‌ها به کار برده شد. سه تصویر جدید (PCA1, PCA2 و PCA3) به عنوان آمادگی نهایی به عنوان داده‌های اصلی انتخاب شدند. همچنین این داده به عنوان نتیجه در نظر گرفته شد. در این بررسی از تکنیک توصیف‌های داده‌های استان زنجان استفاده یافت. در این بررسی از تصاویر فضای ماهواره‌ای لندست + MAHORE به سال ۲۰۰۲ برای مکان یابی و تهیه نقشه جنگل‌های طبیعی استان زنجان استفاده شد.

مقدمه

مناطق زیست محیطی در زمان کوتاه و با هر یک کم است. منابع طبیعی نیز همانند سایر زیست‌ها از این قبیه سخت تهیه است. استان زنجان از نظر جنگل‌های طبیعی از جمله مناطق قیمت

واژه‌های کلیدی: نقشه جنگل، طبقه‌بندی، سنجش از دور، زنجان.
کشور است. برای اساس استان ۲۰۴ سیفون کشاورزی نمایشگاه‌های اولین‌اهرام شرکت‌های کشاورزی بزرگ و همچنین تیپرم‌های رشدی که در آن عوارض به صورت کالا دیده شود مطالبت وجود دارد. حفظ و توسعه منابع طبیعی به خصوص جنگل‌های طبیعی از نظر اقتصادی، اجتماعی، منظره زیستی و زیست

محیط اهمیت دارد. در این استنا نتایج‌های بالایی مانند نتایج جنگل‌ها، مرتع، زیست محیطی، کشاورزی و غیره برای پیام‌هایی گسترده می‌باشد. مساحت و مکان بانی و

تهیه نفع‌های جنگل‌های طبیعی به منظور برنامه‌ریزی و

تهیه یکپارچه بخش‌های ازدحام و ضرر زیست است. یکی از راه‌های

اقتصادی برای رسیدن به این هدف استفاده از داده‌های متن‌بندی‌شده تکنیکی حاصل از داده‌های طبقه‌بندی که به هنگامی مختصات است. در این زمینه در نقاط مختلف جهان و

ارزان تحقیقات زیادی صورت گرفته است. رشدی (۶) در

منطقه عملیه و تنبیه از استان پوشش به استفاده از روش

طبیعی بندی حداقل همانندی روی داده لندد ۷ اقدام به هنگ

مه‌نشه پوشش گیاهی نمود و ۸ کلاس موجود در محدوده مورد

مطالعه را با استفاده کنایه (۷) آمده که ممکن

(۵) نسبت به هنگی نهایی‌فیزیولوژیک - فلوراسیک پوشش

گیاهی خسته می‌خانه جنگل خبرود کنار اقامت نموده است. در

ارزان ترس کردن برای سروش کنار گذاری از طبقه‌بندی فیزیولوژیک و از

روش‌های بالاکننده برای فلوراسیک استفاده شده است. در

تخلیه فیزیولوژیک به و در بررسی فلوراسیک ۱۳ واحد

گیاهی با ساختار منفی‌تکنیکی شده است. پیکرپور و

همچنان (۳) برای منطقه کیش کاشان روند تغییرات شوری

خاک و تعیین مناطق تحت اثر یافته را برداشته‌های

ماهوراهی بررسی کرده‌اند. در این بررسی برای طبقه‌بندی از

تنکیه نتایج شده ویاگریک خلاک (ML) استفاده شده

است. دقت کلی به ترتیب (۶۵ و ۷۲ برای داده‌های

ام اس و تام به دست آمده است. میزان کش (۹) بررسی

قابلیت کار بر داده‌های رقمی ماهوراهی نلدست

تهیه نفع‌های پوشش گیاهی و مقایسه آن با روش زمینی در منطقه
مواد و روش ها

منطقه مورد مطالعه جغرافیایی استان زنجان این است که در بین عرصه های ۱۴۳۵ و ۱۴۳۵ و طول جغرافیایی ۴۴° ۵۷ تا ۴۴° ۲۹ قرار گرفته است و مساحت آن در ۲۲۱۴۹۷۵ هکتار است (۱). نتایج اقیمی در آن استان زنجان یازده است که در پایداری جغرافیایی دارای پیست و بندی زیادی است، به طوری که به‌طور کلی در منطقه طارم علاوه بر تحریکات صعب العبور واقع شده است. گسترش بلوط در این منطقه محدود به ارتفاعات طارم علاوه بر تحریکات گسترش پیرامون در ارتفاع پایین تر از توده های ارس منطقه شده است. سایر گونه های جنگلی مانند شاهد (کوکو گیاه) گروهی که در منطقه مورد بررسی با روش نوری (NDVI) و روش خط جغرافیایی (DVI) درد شهرد ماهیان(1) از شاخش تفاوت پوشش گیاهی و شاخش حرارتی برای تفکیک تأثیر بین پوشش گیاهی و آب و تراکم جنگل در حوزه شاریار و تأثیر و تفاوت در روند شاریار و تأثیر و تفاوت در بررسی این بررسی از تصویر justified نماشگاه ۱۷ باند شاپ ۸، ETM + ماهواره ۷ استفاده شده است. منشأ تصاویر Landsat ماهواره استفاده شده به شرح جدول ۱ است.

روش طبقه بندی و شاخش های پوشش گیاهی

درطبقه بندی داده ماهوارهای به منظور بهبود تغییرات کوکو گیاهی مورد بررسی قرار گرفته است. پیکسل های که منطقه از () ماهوارهای به تغییر لایه سطح و فاصله اختلاف می‌تواند معیار آماری باشد در پیک گره به کلس تعریف و اختصاص می‌پردازد. هر طبقه قابل مدیریت و برنامه ریزی و

شاخش مطلوب، برآورد دقت و شاخش کاپا به منظور انتخاب تکنیک مناسب برای پردازش () استفاده می‌گردد.

شاخش مطلوبی، برآورد دقت و شاخش کاپا

کاپا به منظور انتخاب تکنیک مناسب برای پردازش () استفاده می‌گردد.
جدول 1. مشخصات داده سنجش از دور مورد استفاده

<table>
<thead>
<tr>
<th>شماره</th>
<th>ماهواره</th>
<th>تاریخ</th>
<th>قدرت نفکیک مکانی (متر)</th>
<th>بانه‌های مورد استفاده</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ETM+</td>
<td>20.5.2002</td>
<td>362.80 λυ, λυ, λυ, λυ, λυ, λυ</td>
<td>15.815, λυ, λυ</td>
</tr>
<tr>
<td>2</td>
<td>ETM+</td>
<td>20.5.2002</td>
<td>362.80 λυ, λυ, λυ, λυ, λυ, λυ</td>
<td>15.815, λυ, λυ</td>
</tr>
</tbody>
</table>

جدول 2. انواع شاخص‌های پوشش گیاهی مورد استفاده

<table>
<thead>
<tr>
<th>شاخص</th>
<th>رابطه</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخص پوشش گیاهی</td>
<td>(p_{o - p})</td>
</tr>
<tr>
<td>(DVI)</td>
<td>(\frac{\lambda_r - \lambda_r}{\lambda_r + \lambda_r})</td>
</tr>
<tr>
<td>(NDVI)</td>
<td>(\frac{\lambda_r}{\lambda_r + \lambda_r})</td>
</tr>
<tr>
<td>(IPVI)</td>
<td>(\frac{\lambda_r}{\lambda_r + \lambda_v})</td>
</tr>
<tr>
<td>(IR2)</td>
<td>(\frac{\lambda_r - \lambda_v}{\lambda_r + \lambda_v})</td>
</tr>
<tr>
<td>(MIR)</td>
<td>(\frac{\lambda_r}{\lambda_r + \lambda_v})</td>
</tr>
<tr>
<td>(SAV)</td>
<td>(\frac{P_{ti} - (2 * P_{tot} - P_{tot})}{(P_{tot} + (2 * P_{tot} - P_{tot}))})</td>
</tr>
<tr>
<td>(ARVI)</td>
<td>(\frac{P_{o - p}}{1 - P_{o - p}})</td>
</tr>
</tbody>
</table>

شاخص کایا (KIA)

\[KIA = \frac{P_{o - p} - P_{o - p}}{1 - P_{o - p}} \]

OIF یا شاخص مطلوبیت

KIA یا شاخص کایا

\[Abs(jr) = \text{فقر مطلق مقدار ضرب} \]

\[\text{حداقل تعداد نمونه این برنامه بارود دقت مورد نظر} \]

\[p = \text{دقت طبقه بنیاد برحس درصد} \]

\[q = \text{خطای مجاز در بارود دقت برحس درصد} \]

\[E = \text{درست مشاهده شده} \]

\[S_k = \text{توافق مورد انتظار} \]

\[B_{آوره دقت} = \sum_{k=1}^{m} S_k \]

\[OIF = \frac{\sum_{j=1}^{n} Abs(jr)}{\sum_{j=1}^{n} B_{آوره دقت}} \]

برای محاسبه فاکتور مطلوبیت، نمایندگان می‌شوند که ضریب

هم‌سنتی‌کامته و ارتباط‌یای داشته باشد. از رابطه ۲ برای

بارود دقت مقدار نمونه لازم برای برآورد دقت مورد نظر از

شاخص کایا (۳) برای بررسی دقتی نتایج طبقه بندی در

ارتباط با واقعیت‌ها، زمین‌شناسی استفاده می‌گردد. در این بررسی

شاخص کایا می‌باشد ۱۲ تکنیک سه بانده جغرافیایی گردید. انتخاب

یک یا چند گروه بانده سه که مشترک مقدار کایا (KIP) را

شروع می‌دهد به عنوان بنیان برای طبقه‌بندی و نهیه

نقطه این می‌شوند با انتخاب یک یا چند گروه سه تایی، سابر

تکنیک‌های محاسباتی به دست‌آورد می‌شوند (۲)
مقدمه
مولفه‌های اصلی، تجزیه به عامل و شاخه‌های پوشش‌گذاری با کار بر روی حلقه مولفه‌های اصلی (PCA) می‌باشد. فاصله مولفه تولید شده، به‌طور کلی، به روش پیکسل‌بندی اصلاح شده، به عنوان مولفه‌های واقعیت زمینی در فضای دقت‌های تولید شده مورد مطالعه قرار می‌گیرد.

 walid shehada, râjîs shehada mohassas namivand.

واقعیت زمینی و تغییر دقت طبقه‌بندی
بعد از انجام طبقه‌بندی، تغییر دقت و صحتنقشه به دست آمده ارمتریز است. برای دستیابی به این هدف، نتایج طبقه‌بندی با نقشه واقعیت زمینی مورد مقایسه قرار می‌گیرد. نقشه واقعیت زمینی با طوری کامل و صد در صد و با به صورت منطقه‌ای برای منطقه مورد مطالعه تهیه می‌گردد. از تغییر دقت طبقه‌بندی به دو روش نجات می‌گردد:

الف) میانگین دقت صد درصد بیکل به پیکسل

این روش کامل‌الطبیعه دستگاه و در مواردی به کار می‌رود که نقشه مرجع با واقعیت زمینی از منظر مورد مطالعه در دسترس باشد. نقشه حاصل از طبقه‌بندی (نقشه موضعی) بیکل به پیکسل با نقشه واقعیت زمینی مورد مقایسه قرار می‌گیرد. در صورت مشاهده پیکسل، طبقه‌بندی درست و در غیر این صورت نادرست شده می‌شود. برای نمونه، از هدف ماتریس خطا بین کلاس‌های نقشه طبقه‌بندی شده محاسبه می‌گردد. قطر ماتریس خطا، پیکسل‌های صحت طبقه‌بندی شده هر یک از کلاس‌ها را نشان می‌دهد. با استفاده از این داده، برای دقت کلی، دقت تولید کننده و دقت کلی محاسبه می‌شود و این دقت مبتنی بر روی دقت ۰.۵ و ۵ استفاده می‌شود (۶ و ۱۴).

دقت تولید کننده

PA = \frac{ta}{ga} \times 100 \quad \text{(۴)}

دقت کاربر

UA = \frac{ta}{n} \times 100 \quad \text{(۵)}

دقت کلی

\[OA = \frac{(ta + tb + \ldots)}{NG} \times 100 \quad \text{(۶)} \]

تولید شده، شاخه‌های مطلوبیت (OIF) شاخه‌ای کاپا را برای هر یک از ترکیبات هر به‌نام محاسبه می‌نماید.

نتایج
مولفه‌های اصلی، تجزیه به عامل و شاخه‌های پوشش‌گذاری با کار بر روی حلقه مولفه‌های اصلی (PCA) فاصله مولفه تولید شده، به‌طور کلی، به روش پیکسل‌بندی اصلاح شده، به عنوان مولفه‌های واقعیت زمینی در واقعیت زمینی NC، تغییر Dقت طبقه‌بندی
منظر کاشح حجم داده‌ها به کار برده می‌شود. انتخاب جنبه (Eigenvalue) مولفه اول که بیشترین واریانس وارد می‌شود و بیش از 0.6 دارد به عنوان مولفه اصلی شناخته می‌شود. از اساس ترین اقدامات در تجزیه و تحلیل مولفه‌های اصلی استفاده گردد. با انتخاب جنبه مولفه‌های اصلی، سایر مولفه‌ها از محاسبات بعدی حذف می‌شوند و باید ابتدا دقت تعداد آن شناخته جذب (Eigenvalue) نمود. رسم تغییرات مقدار ویژه (Scree plot) به نظر می‌رود مولفه‌های استخراج شد، اصطلاحاً به آن مطالعه را توجه می‌کند. دومن می‌توانند مقدار ویژه به ترتیب

یک‌ست در کل واریانس را توجه می‌نمایند. در این بررسی هفت (FA) باند اصلی سنجش + T.E.M. تجزیه و تحلیل به عامل‌ها FA1. FA2. فاکتورهای اصلی مورد نظر، توجه کرده که تعداد آنها تعادل چندین شاخص است. در

رگیس در 20 الی 24 قابل رستری و ذخیره گردد. شاخص‌های پوشش گیاهی (جدول 4) برای بررسی ویژعت کمی و کیفی پوشش گیاهی، طبقه‌بندی و توجه فقط مورد سنجش در مورد برای این اساس بیشتر فشار و در این انتخاب بیشتر مشخص کاری در محدوده شبیه صفر 50 درصد و توده‌های بلوط بیشتر در محدوده شبیه 10 تا 20 گونه ارس و توده‌های بلوط بیشتر در محدوده شبیه 50 تا 50 درصد واقع شده‌اند.

نتیجه‌گیری و بحث

نتیجه اطلاعات بر روز و تشکیل بنک اطلاعاتی با استفاده از داده‌های ماهورهدایی قدرت تفکیک مکانی می‌تواند راه حل مناسبی به توجه می‌رسد. بنک اطلاعاتی که برای یک منطقه می‌تواند در داده‌های سنجش با تراز تحقیق سنجیده ماهورهدایی، نتایج آنالیز داده‌های سنجش از درون مانند مولفه‌های اصلی تجزیه به‌طور عامل و شاخص‌های پوشش گیاهی و غیره در خاک‌های یکساد می‌شوند. در تجزیه مولفه اصلی، گروه‌هایی از محققین
جدول ۳. شاخص مطلوبیت برای گروه‌های بالینی

<table>
<thead>
<tr>
<th>شاخص مطلوبیت (OIF)</th>
<th>ترکیب سه تصویر برای RGB</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۲۲/۲۲ ۷۰۴/۲۲۵</td>
<td>FA2, PCA3, MIR</td>
<td>۱</td>
</tr>
<tr>
<td>۷۱۷/۷۰ ۲۱۸/۷۱۷</td>
<td>λ3, PCA3, MIR</td>
<td>۲</td>
</tr>
<tr>
<td>۱۷۲/۱۱۷/۷۲۱</td>
<td>λ7, PCA3, MIR</td>
<td>۳</td>
</tr>
<tr>
<td>۷۰۱/۷۰۱/۲۱۷</td>
<td>λ7, PCA1, PCA3</td>
<td>۴</td>
</tr>
<tr>
<td>۲۰۵/۹۱ ۲۰۵/۸۸</td>
<td>PCA1, PCA3, IPV</td>
<td>۵</td>
</tr>
<tr>
<td>۲۰۵/۸۸ ۲۰۵/۸۸</td>
<td>PCA1, PCA3, MIR</td>
<td>۶</td>
</tr>
<tr>
<td>۲۰۵/۸۸ ۲۰۵/۸۸</td>
<td>λ2, PCA1, PCA3</td>
<td>۷</td>
</tr>
<tr>
<td>۲۱۸/۱۸۵ ۲۱۷/۱۸۵</td>
<td>λ3, PCA1, PCA3</td>
<td>۸</td>
</tr>
<tr>
<td>۱۲۴/۵۰ ۸۴/۸۴</td>
<td>DVI, IPV, MIR</td>
<td>۹</td>
</tr>
<tr>
<td>۸۴/۸۴ ۸۳/۹۹</td>
<td>λ3, λ۴, λ۷</td>
<td>۱۰</td>
</tr>
<tr>
<td>۸۴/۸۴ ۸۳/۹۹</td>
<td>λ۴, λ۵, λ۷</td>
<td>۱۱</td>
</tr>
<tr>
<td>۸۴/۸۴ ۸۳/۹۹</td>
<td>λ۴, λ۵, λ۷</td>
<td>۱۲</td>
</tr>
</tbody>
</table>

جدول ۴. مساحت و درصد درستی تولید کننده و کاربر حاصل از طبقه‌بندی

<table>
<thead>
<tr>
<th>کلاس</th>
</tr>
</thead>
<tbody>
<tr>
<td>شماره</td>
</tr>
<tr>
<td>درصد درستی تولید کننده درصد درستی کاربر</td>
</tr>
<tr>
<td>مساحت به هکتار</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد درستی تولید کننده</td>
</tr>
<tr>
<td>درصد درستی کاربر</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td>X استاندارد فاکتور و مراتع مسکونی</td>
</tr>
<tr>
<td>زراعة آبی</td>
</tr>
<tr>
<td>جنگل ارس</td>
</tr>
<tr>
<td>زراعت دیم</td>
</tr>
<tr>
<td>جنگل بلوط</td>
</tr>
<tr>
<td>زیتون و دیگر باغات منطقه طارم</td>
</tr>
<tr>
<td>صنعت کاری</td>
</tr>
<tr>
<td>محسولات زراعی چند ساله</td>
</tr>
<tr>
<td>مراعت دشت</td>
</tr>
<tr>
<td>مراتع کوهستانی</td>
</tr>
<tr>
<td>توده‌های چنگالی و درختچه‌ای</td>
</tr>
<tr>
<td>سایه‌پوشی به موقعیت‌های داخل دره‌های عمیق</td>
</tr>
<tr>
<td>مناطق کوهستانی</td>
</tr>
<tr>
<td>توده‌های چنگالی و درختچه‌ای</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
</tr>
<tr>
<td>Lf</td>
</tr>
<tr>
<td>J</td>
</tr>
<tr>
<td>LF</td>
</tr>
<tr>
<td>O</td>
</tr>
<tr>
<td>OO</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>PC</td>
</tr>
<tr>
<td>RP</td>
</tr>
<tr>
<td>RU</td>
</tr>
<tr>
<td>TF</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>TR</td>
</tr>
</tbody>
</table>
شکل ۱. تصویر نهایی شده براساس ترکیب سه باند λ₁, λ₂, λ₃ استنجده + اتم در ۲۰۰۲.۵.۲۰

شکل ۲. تصویر نهایی شده براساس ترکیب سه باند λ₁, λ₂, λ₃

شکل ۳. تصویر نهایی شده براساس ترکیب سه باند PCA3, FA, MIR
شکل ۴. نمودار کاهش نمایی تمام گروه‌های تصاریف مورد استفاده برای طبقه‌بندی

شکل ۵. ترکیب رنگی ۲۵۵ از منطقه مورد مطالعه

شکل ۶. نتیجه تهیه شده براساس ترکیب ۲,۵۴,۲,۳ به روش حداکثر هماندی
دانش‌ها صورت گرفته که در کنترل زمینی نیز این پایگاه مورد تایید قرار گرفته‌اند. در کلاس بلات 28 درصد از پیکسل‌های طبقه بندی شده عمداً از کلاس توده‌های درختی و درختچه‌ای کف در نوار آن شده است. تعداد 37 درصد پیکسل‌های طبقه بندی شده در کلاس ارس اکثریت مراکز کوه‌پایین بوده است. پوشش‌های جنگلی از نوع پسته و حوضه، توده مخلوط پسته و حوضه و مرتع مشجر در این استان همکاری می‌نمایند و زیادی نشان می‌دهند که همین دلیل امکان تفکیک آنها از هم‌نوعی مشکل بوده است. نتایج این بررسی با پایه‌های سایر محط‌های آمیخته رسانده شده‌است. تحت اثر پیمان‌های زایی بر پاداش داده‌های ماهواره‌ای بررسی مرتدان دایر از طبقه بندی از تفکیک نظارت شده و با کگلدنمت‌های (ML) ایجاد شده است. وقتی کلی به ترتیب 27 و 2/7/1 درصد داده‌های ام‌اس و تی ام به دست آمده است. در این داده کش‌های (9) بررسی قابلیت کار برد داده‌های رقمی ماهواره‌ای لندست TM برای بهبود مقدار ناقص شده و تعداد سیستم اصلاح که نتایج در روش‌ها نشان می‌دهد که مقدار ناقص شده ماهواره‌ای و مقدار تعیین هسته داشته است. به روش‌های میان‌مانندی (شكل 6) نشان می‌دهد که درصد ماهواره‌ای در صفر مقدار در ماهواره‌ای و درختچه‌ای شامل ارس، بلات و توده‌های درختی و درختچه‌ای کف در نوار آن شده است. این بررسی نشان می‌دهد که پیش‌بینی توده‌های بلات در جهات روز به شمار مفید بوده و در جهات جنوبی کمتر می‌باشد. توده‌های ارس در موقعیت‌های شمالی و جنوبی بیشتر مستقر شده‌اند. صورت کاری‌های استان در مناطق معتدل شیب و در
تهیه نقشه جنگل‌های طبیعی استان زنجان با استفاده از داده‌های سنجشگر

لندست 7 با اشکال روبه‌رو است. لی می‌تواند به‌کار یک پرچاره و همگی منتظر آزمایش کشاورزی، مراقبت و مناطق جنگل‌بای تراکم زیادی استفاده از داده‌های سنجشگر از دور نقدت

ماناب مورد استفاده

1. ی. بی. نام، 1387. آمارنامه استان زنجان. سازمان برنامه و بودجه استان زنجان. نشریه 143، صفحه 143.
2. نسیم، 1387. درس‌نامه اصول سنجش از دور، دانشگاه مجازی، دانشگاه گیلان.
3. پاک‌تری، و. س. م. اطلاعیه 1388. تغییرات تماس ناحیه تراکم جنگل‌ها حویلش شکوف و تغییرات جنگل‌بای داده‌های سنجشگر IRS. پایان نامه کارشناسی ارشد جنگل‌داری، دانشگاه گیلان، دانشگاه مجازی، دانشگاه گیلان.
4. اردشیر، 1388. تهیه نقشه بلوک‌هایی با استفاده از داده‌های سنجشگر + GIS لندست 7 و سیستم اطلاعات جغرافیایی ETM.
5. رشیدی، ج. 1381. تهیه نقشه بلوک‌هایی با استفاده از داده‌های سنجشگر + GIS در منطقه کنگان. پایان‌نامه کارشناسی ارشد، دانشگاه مجازی، دانشگاه گیلان.
6. علی‌رضا، س. 1377. منابع اصول سنجشگر از دور، سازمان مطالعه و تدوین کم غلب منابع تئوری دانشگاه.
7. غضب‌یاری، و. 1375. بررسی کاربرد داده‌های سنجشگر در انتقال داده‌های بین‌سایر جنگل‌بای در منطقه طرح‌های چوب و کاغذ مازنداران. پایان‌نامه کارشناسی ارشد جنگل‌داری، دانشگاه علم کشاورزی و منابع طبیعی گرگان.
8. فیلی، ک. 1379. بررسی دقیقی کاربرد داده‌های سنجشگر لندست 7 برای تهیه نقشه بلوک‌هایی و مقایسه آن با روی زمینی در منطقه سیبزیار. پایان نامه کارشناسی ارشد، دانشگاه مجازی، دانشگاه گیلان.
9. مرتضی‌نیا، 1387. بررسی تغییرات و نقطه بین‌سایر اراضی از درجه متریک شریعتستان زنجان با استفاده از داده‌های سنجشگر. پایان‌نامه کارشناسی ارشد جنگل‌داری، دانشگاه مجازی، دانشگاه گیلان.
10. اردشیر، 1388. بررسی تغییرات تماشای جنگل‌بای غرب استان کردستان با استفاده از داده‌های سنجشگر. پایان نامه کارشناسی ارشد جنگل‌داری، دانشگاه مجازی، دانشگاه گیلان.
12. نصری، ع. 1379. بررسی تغییرات بین‌سایر طبیعی و فضاتی در تهیه نقشه‌های کاربری و پوشش اراضی. وزارت کشاورزی، تهران.