اثر تراکم خاک ناشی از تردد تراکتور بر رشد و عملکرد ذرت آبی

عباس معلی‌اووه و سید حسین کارپور فرد

(تاریخ دریافت: 85/3/13؛ تاریخ پذیرش: 85/11/24)

چکیده
به منظور بررسی تراکم خاک در اثر تردد ماسیون‌های کشاورزی آزمایش‌های مزرعه‌ای در طی سال‌های 92–1381 در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه شیراز انجام گرفت. تیمارها شامل وزن تراکتور در سطح و انگوی تردد در چهار سطح (بودن تردد اضافی، تردد بین خطوط کشت، تردد روی ریفک کشت و تردد در کل زمین بود. اثر وزن ریخ رشد جرم حجمی رشد و عملکرد محصول میانی دار نبود، اما اثر تیمار تردد روی ریخ رشد خم جرم حجمی رشد و عملکرد میانی دار بود. تیمار تردد در کل زمین به طور متوسط 87/3 تر در هکتار و تیمار بدون تردد اضافی با 76/5 در هکتار به ترتیب کمترین و بیشترین عملکرد را نشان دادند.

واژه‌های کلیدی: نشردگی خاک، انگوری تردد، رشد و عملکرد ذرت، جرم حجمی رشد

مقدمه
نشردگی خاک یکی از عوامل مهم محصول کشاورزی رشد کیسه و عملکرد محصول است. به عبارت دیگر نشردگی خاک باعث کاهش نسبت تخلخل، مواد غذایی قابل دسترسی آب و اکسیژن مورد نیاز گیاه می‌شود. در اثر تراکم خاک، درصد خلو و فرخ خصوصاً خل و فر خاک کاهش می‌یابد. بنابراین رشد ریشه گیاه محصول شده و برای رشد طولی و عرضی نیاز به صرف انرژی بیشتری نسبت به حالت عادی دارد. در صورتی که خاک خیلی متراکم شده باشد، رشد ریشه متوسط شده و قادر به عبور از باحال شده می‌نماید. از طرفی

1. به ترتیب دانشوری سایر کارشناسان ارشد و استادان مفهوم ماسیون‌های کشاورزی، دانشکده کشاورزی، دانشگاه شیراز

عکاس: کارپورف
karpavar@shirazu.ac.ir: پست الکترونیکی

579
در کل زمین یکپارچه انجام می‌شود. راگوار و همکاران (۱۰) به کاهش عمق ریشه از ۹۰ سانتی‌متر در پلاست بدون تردد، به ۳۷ سانتی‌متر در پلاست با ۱۵ بار تردد، در فشار نسبت ۶۲ کیلو پاسکال دست داشتند. اما در بعضی تحقیقات هم تردد تراکتور در کل زمین یکپارچه انجام نشده است، به نحوی که کاهش رشد رشته در سمت تردد شده باعث افزایش رشد در سمت دیگر گردیده اما عملکرد در کل پایین آمد است (۱۲).

به‌این معنی برای گزارش کردن که تراکم به وجود آمده از تردد در زمین با رطوبت بالا، باعث افزایش عملکرد در نسبت به کرت‌های بدون تراکم شده و تراکم در زمین با رطوبت بالا که در مکانیزم در فرمول گریزه باشد، چرخ مخصوص خاک و شاخص عطفی افزایش بی‌کنا در که کاهش عملکرد نسبت به ریشه‌های کرت با طرف آنها تردد نشده بود، نیاز در سال دوم و نیت خود را تکمیل کردند.

تاکنون تحقیقات زیبایی روی تراکم خاک بر اثر تردد ماشین‌های کشاورزی انجام شده که این تحقیقات تردد در کل زمین یکپارچه انجام نشده است. در تحقیق حاضر، تردد در سطح زمین به صورت یکپارچه انجام داده شده و اثر تراکم خاک با دو تیمار:

۱- وزن تراکتور در دو سطح: (۱)
 ۱- سبک، تراکتور مسی فرگوسن مدل ۲۸۵ (P۱).
 ۲- سنگین، تراکتور مسی فرگوسن مدل ۲۸۵ سنگین شده (P۲).
 ۲- گوی تردد در چهار سطح: (۲)
 ۱- بدون تردد اضافی (T۱).
 ۲- تردد در خطوط کشت (T۲).
 ۳- تردد روی رخ‌های کشت (T۳).
 ۴- تردد در کل زمین (T۴).

روی حسیات علائم حاکی، جرم حجمی ریشه و عملکرد گیاه درت در بررسی هستند. هدف این تحقیق، مطالعه و

و بدون تردد در خاک شنی منطقه کویونی کنیا انجام داده و گزارش کردن که در تحقیق ۱۵ بار تردد و تحت تراکتور از ۱۰ به ۱۸ در خاک رست کننده کاهش عملکرد محصول

۲۷-۱۸٪/ در شرایط مناسب آب و هوا و کاهش عملکرد ۴۶-۵۵٪/ در شرایط مناسب آب و هوا و بزود مکرر دسترسی به وجود آمد است. هم‌اکنون (ج) با اعمال بار محوری ۵، ۱۰ و ۲۰ تن روی خاک سه‌بلندی دوم در آدابه، گزارش نمود که با افزایش بار، چرخ مخصوص خاک و شاخص عطفی و

عمق ۷۵ سانتی‌متر افزایش پیدا کرده و به ۷۰تن کاهش محصول اثر معنی‌داری نداشته و در بازه ۲۰ تن کاهش ورش و راهرو محصول نشان داده شده است. نلوری و اسچولر (۹) به محوری ۸ و ۱۲ تن را نمود خاک زمین و رسی سیستم عامل کردن و گزارش نمودند عملکرد

ذرت دانهای در سال جدید در هر دو نوع خاک با خاک سیلیت و رسی سیستم عامل کردن و گزارش نمودند عملکرد در تراکم ۵۰٪ کاهش عملکرد ذرت و

در تراکم متوسط ۵۰٪ کاهش عملکرد ذرت به وجود آمد، چرخ مخصوص خاک در تراکم شدید ۱/۸۲ در تراکم متوسط ۱/۷۶ و در بدون تراکم ۱/۷۱ گرم بر سانتی‌متر مکعب

بوده است.

تردد ماشین‌های کشاورزی باعث کاهش فضای پایین دراز خاک شده و چگالی خاک را افزایش می‌دهد. گیاه برای رسید

ریشه در خاک متراکم نازک به حفظ نیرو ماشین، زیرا با مفاهم مکانیکی و کمک مکانیکی که برای افزایش مقاومت مکانیکی و

می‌تواند است. (۱۶) اولین مطالعه‌ها در مورد کاهش رشد ریشه

در مقابل خاک متراکم متوسط تیلور و گاردنر (۱۵) سوخت

گرفت. آنها گزارش کرده که در خاک با مقاومت به نفوذ

۲/۹۶ مگا پاسکال، به علت افزایش چرخ مخصوص و کمکی

روش در خاک، رشد قادر به نفوذ نبود به مواد معادی به آن

نمی‌رسد.

برای مطالعه توسه ریشه در بعضی تحقیقات تردد تراکتور

۸۰
جدول 1. خصوصیات بافت خاک محل تحقیق

<table>
<thead>
<tr>
<th>اسم</th>
<th>رسی و شنی</th>
<th>رسی و شنی</th>
<th>رسی</th>
<th>رسی و شنی دار</th>
<th>رسی و شنی دار</th>
<th>کیفیت غشا</th>
<th>عمق cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>اسم</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A11P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0–30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A12P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30–54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A21P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54–112</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A22P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>112–158</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>158–180</td>
</tr>
</tbody>
</table>

مراحل انجمام آزمایش

پس از انتخاب زمین، اوایل تردد تراکتور بر رشد و عملکرد گیاه در می‌باشد. لازم به ذکر است، فشذگی انجم شده در 14 ماهه زیرین انجم شده در 14 ماهه زیرین انجم شده رشد و عملکرد گیاه در می‌باشد. وجود آبده شده آزمایش در عضویت‌های انجمام شده در فضای آب و تغییرات وزن دو انجمام نمایش داده می‌گردد. در اواخر زمان، ارائه شده 6 و برنج از آب‌های رطوبت در هر کرت در سه يوم (20–30) و (31–40) به⽤یت در کل زمین اختلاف معنی‌داری نداشت و مقدار رطوبت در هر سه يوم به‌طور از بین ترتیب 22/49 و 22/58 درصد در سال 1381/1368 و 24/25 درصد در سال 1382/1371 به‌طور می‌باشد.

مواد و روش‌ها

ثبت عمومی مزرعه تحقیقاتی

این آزمایش در قطعه زمینی از مزرعه تحقیقاتی دانشگاه کشاورزی دانشگاه شیراز واقع در 15 کیلومتری شمال غربی شهر شیراز در منطقه باجانگ اجرا گردید. از لحاظ جغرافیایی در عرض 29 درجه و 36 دقیقه شمالی و طول جغرافیایی 55 درجه و 32 دقیقه شرقی قرار دارد و ارتفاع دشت باجانگ در محل اجرای این تحقیق 1810 متر نسبت به سطح آزاد دریا می‌باشد.

مشخصات کلی خاک آن در خیلی عمق به رنگ فهوه‌ای مایل به زرد تا فهوه‌ای مایل به زرد روش با بالات درسی و شن بر روی طبقه‌ای به رنگ فهوه‌ای مایل به زرد با فاقد نسبت رنگ فهوه‌ای مایل به زرد روش با بالات و رسی سیلت داد و بدون ساختاری می‌باشد. در جدول 1 خصوصیات بافت خاک محل تحقیق موسم به "سری دانشگاه" مشخص شده است(1).
جدول 2. مشخصات تراکتور در حین اعمال تیمار

<table>
<thead>
<tr>
<th>وزن تراکتور (Mg)</th>
<th>تراکتور مسی فرگوسن (P1)</th>
<th>تراکتور مسی فرگوسن (P2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>فشار باد استیک تراکتور (psi)</td>
<td>285</td>
<td>285</td>
</tr>
<tr>
<td>چرخ عقب</td>
<td>3/4</td>
<td>3/4</td>
</tr>
<tr>
<td>چرخ جلو</td>
<td>26</td>
<td>26</td>
</tr>
</tbody>
</table>

شکل 1. محلهای ترد تراکتور برای اعمال تیمارهای تراکم خاک

- P1: سبک، تراکتور مسی فرگوسن 285
- P2: سنگین، تراکتور مسی فرگوسن 285

- T1: بدون تردد اضافی
- T2: تردد بین خطوط کشت
- T3: تردد روی ریف کشت
- T4: تردد در کل زمین

۵۸۲
نحوه‌ی کارکرد مصرف چربی‌های مصرف‌کننده کربن در مصرف‌کننده چربی‌های مصرف‌کننده کربن

با توجه به استفاده از الگوهای مختلف، می‌توانیم از این الگوهای مختلف برای کاهش چربی‌های مصرف‌کننده کربن استفاده کنیم. برای این کار، می‌توانیم از الگوهای مختلف در شرایط مختلف استفاده کنیم.

در هر شرایطی، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در مصرف چربی‌های مصرف‌کننده کربن داشته باشیم. در عین حال، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در کاهش چربی‌های مصرف‌کننده کربن داشته باشیم.

با توجه به استفاده از الگوهای مختلف، می‌توانیم از این الگوهای مختلف برای کاهش چربی‌های مصرف‌کننده کربن استفاده کنیم. برای این کار، می‌توانیم از الگوهای مختلف در شرایط مختلف استفاده کنیم.

در هر شرایطی، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در مصرف چربی‌های مصرف‌کننده کربن داشته باشیم. در عین حال، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در کاهش چربی‌های مصرف‌کننده کربن داشته باشیم.

با توجه به استفاده از الگوهای مختلف، می‌توانیم از این الگوهای مختلف برای کاهش چربی‌های مصرف‌کننده کربن استفاده کنیم. برای این کار، می‌توانیم از الگوهای مختلف در شرایط مختلف استفاده کنیم.

در هر شرایطی، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در مصرف چربی‌های مصرف‌کننده کربن داشته باشیم. در عین حال، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در کاهش چربی‌های مصرف‌کننده کربن داشته باشیم.

با توجه به استفاده از الگوهای مختلف، می‌توانیم از این الگوهای مختلف برای کاهش چربی‌های مصرف‌کننده کربن استفاده کنیم. برای این کار، می‌توانیم از الگوهای مختلف در شرایط مختلف استفاده کنیم.

در هر شرایطی، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در مصرف چربی‌های مصرف‌کننده کربن داشته باشیم. در عین حال، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در کاهش چربی‌های مصرف‌کننده کربن داشته باشیم.

با توجه به استفاده از الگوهای مختلف، می‌توانیم از این الگوهای مختلف برای کاهش چربی‌های مصرف‌کننده کربن استفاده کنیم. برای این کار، می‌توانیم از الگوهای مختلف در شرایط مختلف استفاده کنیم.

در هر شرایطی، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در مصرف چربی‌های مصرف‌کننده کربن داشته باشیم. در عین حال، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در کاهش چربی‌های مصرف‌کننده کربن داشته باشیم.

با توجه به استفاده از الگوهای مختلف، می‌توانیم از این الگوهای مختلف برای کاهش چربی‌های مصرف‌کننده کربن استفاده کنیم. برای این کار، می‌توانیم از الگوهای مختلف در شرایط مختلف استفاده کنیم.

در هر شرایطی، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در مصرف چربی‌های مصرف‌کننده کربن داشته باشیم. در عین حال، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در کاهش چربی‌های مصرف‌کننده کربن داشته باشیم.

با توجه به استفاده از الگوهای مختلف، می‌توانیم از این الگوهای مختلف برای کاهش چربی‌های مصرف‌کننده کربن استفاده کنیم. برای این کار، می‌توانیم از الگوهای مختلف در شرایط مختلف استفاده کنیم.

در هر شرایطی، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در مصرف چربی‌های مصرف‌کننده کربن داشته باشیم. در عین حال، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در کاهش چربی‌های مصرف‌کننده کربن داشته باشیم.

با توجه به استفاده از الگوهای مختلف، می‌توانیم از این الگوهای مختلف برای کاهش چربی‌های مصرف‌کننده کربن استفاده کنیم. برای این کار، می‌توانیم از الگوهای مختلف در شرایط مختلف استفاده کنیم.

در هر شرایطی، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در مصرف چربی‌های مصرف‌کننده کربن داشته باشیم. در عین حال، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در کاهش چربی‌های مصرف‌کننده کربن داشته باشیم.

با توجه به استفاده از الگوهای مختلف، می‌توانیم از این الگوهای مختلف برای کاهش چربی‌های مصرف‌کننده کربن استفاده کنیم. برای این کار، می‌توانیم از الگوهای مختلف در شرایط مختلف استفاده کنیم.

در هر شرایطی، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در مصرف چربی‌های مصرف‌کننده کربن داشته باشیم. در عین حال، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در کاهش چربی‌های مصرف‌کننده کربن داشته باشیم.

با توجه به استفاده از الگوهای مختلف، می‌توانیم از این الگوهای مختلف برای کاهش چربی‌های مصرف‌کننده کربن استفاده کنیم. برای این کار، می‌توانیم از الگوهای مختلف در شرایط مختلف استفاده کنیم.

در هر شرایطی، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در مصرف چربی‌های مصرف‌کننده کربن داشته باشیم. در عین حال، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در کاهش چربی‌های مصرف‌کننده کربن داشته باشیم.

با توجه به استفاده از الگوهای مختلف، می‌توانیم از این الگوهای مختلف برای کاهش چربی‌های مصرف‌کننده کربن استفاده کنیم. برای این کار، می‌توانیم از الگوهای مختلف در شرایط مختلف استفاده کنیم.

در هر شرایطی، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در مصرف چربی‌های مصرف‌کننده کربن داشته باشیم. در عین حال، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در کاهش چربی‌های مصرف‌کننده کربن داشته باشیم.

با توجه به استفاده از الگوهای مختلف، می‌توانیم از این الگوهای مختلف برای کاهش چربی‌های مصرف‌کننده کربن استفاده کنیم. برای این کار، می‌توانیم از الگوهای مختلف در شرایط مختلف استفاده کنیم.

در هر شرایطی، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در مصرف چربی‌های مصرف‌کننده کربن داشته باشیم. در عین حال، با استفاده از الگوهای مختلف می‌توانیم بهبود‌هایی در کاهش چربی‌های مصرف‌کننده کربن داشته باشیم.

با توجه به استفاده از الگوهای مختلف، می‌توانیم از این الگوهای مختلف برای کاهش چربی‌های مصرف‌کننده کربن استفاده کر
شکل ۲. قرار گرفتن شبکه‌های میله‌ای عمود بر ردیف گیاه ذرت برای خواندن شاخص ریشه

۱. بدون ریشه (N=0)
۲. یک ریشه با قطر بیشتر از ۰/۵ میلی‌متر (N=2)
۳. یک ریشه با قطر برابر با ۰/۵ تا ۱ میلی‌متر به همراه ریشه‌های کوچک‌یا چند ریشه با قطر کمتر از ۰/۵ میلی‌متر (N=4)
۴. دو ریشه با قطر بیشتر از ۰/۵ میلی‌متر به همراه ریشه‌های کوچک (N=8)

شکل ۳. تعبیه شاخص ریشه به وسیله شمارش و اندازه‌ریشه (14)

شاخه ریشه آن برای ۸ می‌باشد. شاخص ریشه به صورتی که در شکل ۳ مشاهده می‌شود، تعیین شده است. پس از به دست آوردن شاخص ریشه، جرم حجمی ریشه با استفاده از رابطه (1) تخمین زده شد.

\[
D_r = \frac{0.347N + 0.0118N^2}{V}
\]

که در آن:

\[N\] تعداد ریشه‌ها

\[V\] حجم مطالعه‌شده

\[D_r\] شاخص ریشه
طرح مورد استفاده در تحقیق

این آزمایش با صورت طرح فاکتوریل ۲×۲ در قالب طرح بولکویه کاملاً تصادفی در ۲ کنار انجام شد. برای تجزیه و تحلیل داده‌های آزمایش از نرم‌افزار MSTATC و مقایسه میانگین‌ها از طریق آزمون دانکین در سطح ۰/۰۵ انجام شد. نمودارهای مورد نیاز با استفاده از نرم افزار RESS EXCEL گردید.

نتایج و بحث

جرم مخصوص ظاهری و شاخ صخوشی خاک

با توجه به جدول ۳ اثر مورد وارون تراکتور بر جرم مخصوص ظاهری خاک به‌طور مشابه در میان ۰-۵۰ و ۵۰-۱۵ سانتیمتر با فاصله ۵ سانتیمتر داشته و اثر تراکتورت وارد سطح این تحقیق با علت آن که بقیه قطب از دست داده شد و در نهایت نادرد. این به‌طور خاص در عمق ۰-۱۵ دردسر و می‌تواند موجب سطح محسوب گردد.

در این تحقیق نخ رشد است. در این مورد باید توجه به جدول ۳ اثر تراکتور وارد وارون محاسبه شود و برای زیربخ شاخ صخوشی خاک با توجه به نتایج جرم مخصوص ظاهری و شباهت مصرفی خاک اختلاف معنی‌داری در تراکتور نیست می‌باشد. اثر تراکتور بر روی نرخ رشد اثر معنی‌داری داشته است، زیرا تراکتور در)

شکل ۲. شاخص مخروطی در قبل و بعد از تردد

- پیوسته:
P1
- تردد در سالگی و ۲۸۵ سالگی شده
- پیوسته:
P1
- پیوسته:
P1
- پیوسته:
P1
- پیوسته:
P1
جدول 2-1. مقایسه میانگین‌های جرم مخصوص ظاهری خاک

<table>
<thead>
<tr>
<th>الگوهای تردد</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>عمق (cm)</td>
<td>0-15</td>
<td>16-30</td>
<td>31-45</td>
<td></td>
</tr>
<tr>
<td>جرم مخصوص ظاهری خاک (g/cm³)</td>
<td>1/67</td>
<td>1/25</td>
<td>1/4</td>
<td></td>
</tr>
</tbody>
</table>

1. در هر سطح تفاوت بین هر دو میانگین که حداقل دارای یک حرف مشترک باشد، از نظر آماری معنی‌دار نیست.(دانکن). 2. بی‌بین تردد تردد اضافی، T1 تردد بین خطوط کشت، T4 تردد در کل زمین.
جدول ۲. مقایسه میانگین‌های جرم مخصوص ظاهری خاک در قبل و بعد از تردد

<table>
<thead>
<tr>
<th>تیمارهای وزن</th>
<th>P_2</th>
<th>P_1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T_4</td>
<td>T_3</td>
</tr>
<tr>
<td>جرم مخصوص ظاهری خاک (g/cm³)</td>
<td>قبل از تردد</td>
<td>بعد از تردد</td>
</tr>
<tr>
<td>۱/۲۲۵۳</td>
<td>۱/۲۲۱۵</td>
<td>۱/۲۳۸۱</td>
</tr>
</tbody>
</table>

۱. در هر سطح تفاوت بین هر دو میانگین که حداقل دارای یک حرف مشترک باشد، از نظر آماری معنی‌دار نیست (دانکن/۵).

۲. $P_1 - P_2$ - سیک ، تراکتور مسی فرگوسن ۲۸۵ - تراکتور مسی فرگوسن ۲۸۵ - تردد دو تردد اضافی $T_1 - T_1$ - تردد بین خطوط کشت $T_1 - T_1$ - تردد روی ردیف کشت $T_4 - T_4$ - تردد در کل زمین $T_4 - T_4$.

جدول ۳. مقایسه میانگین‌های ارتفاع گیاه در تردد روزهای مختلف پس از کاشت

<table>
<thead>
<tr>
<th>آلگوهای تردد</th>
<th>رو ز</th>
<th>پس از کاشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_4</td>
<td>T_3</td>
<td>T_2</td>
</tr>
<tr>
<td>ارتفاع گیاه (cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۵</td>
<td>۳۲/۸</td>
<td>۳۵/۳</td>
</tr>
<tr>
<td>۲۵</td>
<td>۳۲/۸</td>
<td>۳۵/۳</td>
</tr>
<tr>
<td>۲۵</td>
<td>۳۲/۸</td>
<td>۳۵/۳</td>
</tr>
</tbody>
</table>

۱. در هر سطح تفاوت بین هر دو میانگین که حداقل دارای یک حرف مشترک باشد، از نظر آماری معنی‌دار نیست (دانکن/۵).

۲. $T_1 - T_1$ - بدون تردد اضافی $T_1 - T_1$ - تردد بین خطوط کشت $T_1 - T_1$ - تردد روی ردیف کشت $T_1 - T_1$ - تردد در کل زمین $T_1 - T_1$.

جدول ۴. مقایسه میانگین‌های وزن ماده خشک گیاه درت در روزهای مختلف پس از کاشت

<table>
<thead>
<tr>
<th>آلگوهای تردد</th>
<th>رو ز</th>
<th>پس از کاشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_4</td>
<td>T_3</td>
<td>T_2</td>
</tr>
<tr>
<td>وزن ماده خشک گیاه درت (g/plant)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷/۵۹۳</td>
<td>۱۲/۱۸</td>
<td>۱۰/۵۸</td>
</tr>
<tr>
<td>۷/۵۹۳</td>
<td>۱۲/۱۸</td>
<td>۱۰/۵۸</td>
</tr>
</tbody>
</table>

۱. در هر سطح تفاوت بین هر دو میانگین که حداقل دارای یک حرف مشترک باشد، از نظر آماری معنی‌دار نیست (دانکن/۵).

۲. $T_1 - T_1$ - بدون تردد اضافی $T_1 - T_1$ - تردد بین خطوط کشت $T_1 - T_1$ - تردد روی ردیف کشت $T_1 - T_1$ - تردد در کل زمین $T_1 - T_1$.
جدول 7. مقایسه میانگین‌های چرم حجمی ریشه گیاه ذرت در مرحله بلوشده

<table>
<thead>
<tr>
<th>گروه‌های ترکیبی</th>
<th>T_4</th>
<th>T_3</th>
<th>T_2</th>
<th>T_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g/cm3)</td>
<td>0.3878</td>
<td>0.3504</td>
<td>0.3254</td>
<td>0.3279</td>
</tr>
</tbody>
</table>

1. در هر سطح 7 سرو در دو میانگین که حداقل دوای یک حر فاکتک را بی‌درنگ. از ظرف آماری معنی‌دار نیست (دالیکن/5).
2. T_1- بدون ترکیب است. T_2- ترکیب بین خطوط کشت، T_3- ترکیب روی ریشه کشت، T_4- ترکیب در کل زمین

بود که حدود 14 تا 20 سانتی‌متر از دیگر تیمارهای ترکیب کمتر می‌باشد. در همان تاریخ جرم ماده خشک در هر گرم 20 کرم بود که حدود 180 کرم بود که حدود 80 کرم از دیگر تیمارهای ترکیب کمتر بود. نکته مهمی که در جدول 5 و 6 به چشم می‌خورد آن این است که در تیمارهای ترکیب روی ریشه و ترکیب در بین ریشه اختلاف معنی‌داری مشاهده نمی‌شود. اینان با توجه به تابع محصول و ریشه، گشترب این ترکیب روی ریشه به صورت یک‌نواخت نیست در ترکیب روی ریشه کشت. و در ترکیب در کل زمین می‌باشد در زنده، زیرا با توجه به تابع محصول و ریشه مشاهده می‌شود.

جرم حجمی ریشه

جرم حجمی ریشه در مرحله بلوشده ذرت اندیشه‌گری شد. با توجه به جدول 7 اثر ترکیب روی جرم حجمی ریشه تاثیر معنی‌داری داشته است. در تیمار ترکیب در کل زمین کمترین چرم حجمی ریشه به دست آمده، زیرا تیمار ترکیب در کل زمین سبب تراکم در لایه‌های زیری خاک به حالت یک‌نواخت شده و منع گشترب و تهیه ریشه شده است. کاسیپر و همکاران (8) نیز گزارش کردند که درکتک تراکم شده نسبت به کریک بدون ترکیب در 30 سانتی‌متر بین خاک اول‌گیاه اثر کاسته می‌باشد. اکثریت ریشه موجودات روش ریشه وجود داشته است. شکل 5 نحوه توزیع ریشه در دو طرف گیاه ذرت در تیمارهای مختلف را نشان می‌دهد. میانگین رقم بلوشده و درجه 7 به ترکیب ۵ پیش‌بینی ۵۶۹ بیشتر از ۱۰۴۹ می‌باشد. در شکل 6 توزیع ریشه بر حسب عمق

589
شکل 5. چرم حجمی ریشه در دو سوی رادیف ذرت

- P1
- سبک تراکتور مسی فرگوسن ۲۸۵
- سنگین تراکتور مسی فرگوسن ۲۸۵
- P1
- بدون تردد اضافی
- تردد بین خطوط کشت
- T3
- تردد روی رادیف کشت
- T4
- تردد در کل زمین

T1
اثر تراکم خاک ناشی از تردد تراکتور بر رشد و عملکرد درخت آی

![Graphs showing data points and regression lines.](image)

شکل 6. میانگین حجمی ریشه در عمق‌های مختلف
- سه‌گیاه تراکتور مسئو فرگوسون 785
- سه‌گیاه تراکتور مسئو فرگوسون 785
- 1/4
- 1/4
- 1/4
- 1/4
- 1/4

- تردد بدون تردد اضافی
- تردد بین خطوط کشت
- تردد روی رگید کشت
- تردد در كل زمين

591
شکل ۷ توزیع جرم حجمی ریشه (محور افقی: فاصله از گیاه، عمود بر ریشد کشت و محور عمودی: عمق از سطح زمین)

- P۱ - پیک تراکتور مسی فرگوسن ۲۸۵
- P۲ - مسی فرگوسن ۲۸۵ سه‌گنگ
- P۳ - پیک تراکتور مسی فرگوسن ۲۸۵ سه‌گنگ
- P۴ - پیک تراکتور مسی فرگوسن ۲۸۵ سه‌گنگ

- T۱ - بدون تردید اضافی
- T۲ - تردید بین خطوط کشت
- T۳ - تردید روی ریشد کشت
- T۴ - تردید در کل زمین
جدول ۸ مقایسه میانگین‌های عملکرد دانه ذرت

<table>
<thead>
<tr>
<th>الگوهای تردد</th>
<th>عملکرد (Mg/ha)</th>
<th>وزن دانه‌ها در هر بالا (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>3.97</td>
<td>247/6</td>
</tr>
<tr>
<td>T3</td>
<td>3.33</td>
<td>221/6</td>
</tr>
<tr>
<td>T2</td>
<td>2.64</td>
<td>214/6</td>
</tr>
<tr>
<td>T1</td>
<td>2.43</td>
<td>232/5</td>
</tr>
</tbody>
</table>

یک ۴۰ تنی حتی در رطوبت باین، باعث کاهش رشد ریشه و رشد محصول شده است. به عبارت دیگر افزایش محدود وزن، اثر معنی‌داری روی عملکرد نمی‌کنند. مخصوصاً با توجه به نتیجه هالک اگر تردد در شیار خشک صورت گرفته باشد، اثر وزن در مقادیر بالا نیز معنی‌دار نبود. با توجه به جدول ۳، پیشنهاد می‌شود که در تیمار تردد در کل زمین به طور متوسط ۳/۹۷ تن در هکتار و در تیمار بدون تردد حدود ۶/۷۵ تن در هکتار عملکرد به دست آمده است. در تیمارهای تردد بدون ریز و تردد روی ریز، ظهور عملکرد به ترتیب ۷/۴ و ۵/۳ تن در هکتار بوده. همان طور که مشاهده می‌شود در الگوی تردد در کل زمین کاهش چشمگیر عملکرد نسبت به تردد روی ریز و تردد بین ریز رخ داده است، ولی با توجه به جدول ۷، باین‌که اختلاف معنی‌دار بین تیمارها در جرم حجمی ریشه وجود دارد، اما از لحاظ خودی تندیک بی‌هم‌بپایانه. به نظر می‌رسد ان انواع انجام شده توسط معاونت محرز چهارشایدی به دلیل خودکاری فشرده‌گی در گیاهانی...

سیستم‌گرایی

می‌تواند گراندازه‌ای از معدن‌های انجام شده توسط معاونت محشر برون‌نشینی داشته‌ای شیاز شکری و قدردانی به عمل می‌آورند.
مناقب مورد استفاده

1. ابطحی، غ. ن. کریمیان و م. صالحی. 1376. گزارش مطالعات شاخص شناسی نیمه تفضیلی اراضی منطقه با‌یج‌یاه-اصفان فارس. انتشارات دانشگاه شیراز.

